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This paper applies the MILES approach for SAS seabed context 
identification and presents an extension for possibilistic context 
identification. 
 Future work may include investigation into intelligent down 
sampling of SAS imagery and the investigation of the inclusion of 
other features (e.g., bathymetry-based features) during 
classification.  
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Motivation and Goal 

Challenges: 
● Gradual change between seabed types 
● Multiple seabed types in one superpixel 
● Difficulty in obtaining accurate training labels 
 
Goal: 
● Seabed context identification 
 
Method: 
● Multiple Instance Learning 
● Superpixel-level labeling 
● Possibilistic 
 
 
 
 
 
 

MILES Overview 

MILES Feature Mapping 

MILES Classification 

Possibilistic Mapping 

Results - Feature Mapping 

It is demonstrated that the high-dimensional feature mapping is 
providing useful information for the one-norm SVM classification 
later.  

Results - One-vs-all Classification  
MILES yields the lowest error and selects fewer features. 

2-fold cross validation 
Context  Type MILES Mean-of-bag Hist10 Hist40 
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Results - Hamming Distance 

Hamming distance measures multi-class error across all context labels. 

Results - Possibilistic Map 

Conclusion 

Selected References 

Possibilistic map highlights the desired regions. 

Multiple Instance Learning via Embedded  Instance Selection [2] 
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462-fold cross validation 
Context  

Type 
MILES Mean-of-

bag 
Hist10 Hist40 

Sand ripple 57 96 135 153 
Hard-

packed 
sand 

59 57 71 80 

Sea grass 53 53 64 66 
Shadow 24 27 55 57 

# of selected features 
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