

Possibilistic Context Identification for SAS Imagery Xiaoxiao Du^a, Alina Zare^a, J. Tory Cobb^b ^aElectrical and Computer Engineering, University of Missouri, Columbia, MO, USA; ^bNaval Surface Warfare Center, Panama City Division, Panama City, FL, USA

Motivation and Goal

Challenges:

- Gradual change between seabed types
- Multiple seabed types in one superpixel
- Difficulty in obtaining accurate training labels

Goal:

Seabed context identification

Method:

- Multiple Instance Learning
- Superpixel-level labeling
- Possibilistic

MILES Overview

Multiple Instance Learning via Embedded Instance Selection [2]

MILES Feature Mapping

$$s(\mathbf{x}^{k}, \mathbf{B}_{i}) = \max_{j} \exp\left(-\frac{\|\mathbf{x}_{ij} - \mathbf{x}^{k}\|^{2}}{\sigma^{2}}\right)$$

 $s(\mathbf{x}^k, \mathbf{B}_i)$: similarity between instance k and Bag i

Similarity determined using distance between the instance and the most similar concept in the bag

Features for each data point

mean, LoG filter variance, Shape parameter computed from a neighborhood window

MILES Classification

One-norm SVM classification

$$y = sign\left(\sum_{k=1}^{n} w_k s(\mathbf{x}^k, \mathbf{B}_i) + \right)$$

Optimization Problem (objective function)

$$\min_{w,b,\eta,\xi} \lambda \sum_{k=1}^{n} |w_k| + c_1 \sum_{i=1}^{l^+} \xi_i + c_2 \sum_{j=1}^{l^-} \eta_j$$

such that
$$(\mathbf{w}^T \mathbf{m}_i^+ + b) + \xi_i \ge 1, i = 1, ..., l^+$$

 $(\mathbf{w}^T \mathbf{m}_j^- + b) + \eta_j \ge 1, j = 1, ..., l^-$
 $\xi_i, \eta_j \ge 0$

where
$$m(B_i) = [s(x^1, B_i), s(x^2, B_i), ..., s(x^k, B_i)]$$

Possibilistic Mapping

1: Obtain **w** from trained one-norm SVM

2: for $\forall k: w_k > 0$ do

3:
$$D^{k}(j) = [d^{2}(\boldsymbol{x}_{j}, \boldsymbol{x}^{k})/\eta_{k}]^{\frac{1}{m-1}}$$

4: end for

5: return $D_{Pos}(j) = \sum_{k:w_k>0} w_k D^k(j)$

Results - Feature Mapping

It is demonstrated that the high-dimensional feature mapping is providing useful information for the one-norm SVM classification later.

Sand ripple

Sea grass

Results - One-vs-all Classification

MILES yields the lowest error and selects fewer features.

2-fold cross validation					
Context Type	MILES	Mean-of-bag	Hist10	Hist40	
Sand ripple	0.1760 <u>+</u> 0.0109	0.2713 <u>+</u> 0.0033	0.2944 <u>+</u> 0.0283	0.2923 <u>+</u> 0.0193	
ard-packed sand	0.1219±0.0025	0.1234±0.0000	0.1356±0.0050	0.1666±0.0099	
Sea grass	0.1147 <u>+</u> 0.0000	0.1147±0.0000	0.1602 <u>+</u> 0.0044	0.1746 <u>+</u> 0.0066	
Shadow	0.0751 <u>+</u> 0.0013	0.0758±0.0000	0.0830±0.0012	0.0815. <u>+</u> 0.0033	
462-fold cross validation		# of solocto	d footuros		

MILES	Mean-of- bag	Hist10	Hist40		
57	96	135	153		
59	57	71	80		
53	53	64	66		
24	27	55	57		
	MILES 57 59 53 24	MILES Mean-of-bag 57 96 59 57 53 53 24 27	MILES Mean-of- bag Hist10 57 96 135 59 57 71 53 53 64 24 27 55		

OI SEIECLED IEALURES

Results - Hamming Distance

Hamming distance measures multi-class error across all context labels.

Possil
Sand rip
100 -
300 - 400 -
500 - 600 - 50 100 -
100 -
200 -
400
Hard-pac
100 -
200 -
400 -
100 -
200 - 300 -
400
Shadow
100 -
300 -
500 -
50 100
100 200
300 400
500 600 100
This a
identif
identif
sampl
other
Classi
[1] T (

2006.

Results - Possibilistic Map

bilistic map highlights the desired regions.

Conclusion

paper applies the MILES approach for SAS seabed context fication and presents an extension for possibilistic context fication.

re work may include investigation into intelligent down ling of SAS imagery and the investigation of the inclusion of features (e.g., bathymetry-based features) during ification.

Selected References

Cobb and A. Zare, "Multi-image texton selection for sonar image seabed contation," in Proc. SPIE, Detection and Sensing of Mines, Explosive Objects, oscured Targets XVIII, **8709**(87090H), 2013.

[2] Y. Chen, J. Bi, and J. Wang, "Miles: Multiple-instance learning via embedded instance selection," IEEE Trans. Pattern Anal. Mach. Intell., 28(12), pp. 1931-1947,

[3] R. Krishnapuram and J. Keller, "A possibilistic approach to clustering," IEEE *Trans. Fuzzy Syst.,***1**(2), pp. 98-110, 1993.

[4] C. M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag New York, Inc., 2006.

[5] R. W. Hamming, "Error detecting and error correcting codes," Bell Syst. Tech. J., **29**(2), pp. 147-160, 1950.