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Abstract. The Choquet integral (ChI), a parametric function for infor-
mation aggregation, is parameterized by the fuzzy measure (FM), which
has 2N real-valued variables for N inputs. However, the ChI incurs huge
storage and computational burden due to its exponential complexity rel-
ative to N and, as a result, its calculation, storage, and learning becomes
intractable for even modest sizes (e.g., N = 15). Inspired by empirical
observations in multi-sensor fusion and the more general need to miti-
gate the storage, computational, and learning limitations, we previously
explored the binary ChI (BChI) relative to the binary fuzzy measure
(BFM). The BChI is a natural fit for many applications and can be used
to approximate others. Previously, we investigated different properties of
the BChI and we provided an initial representation. In this article, we
propose a new efficient learning algorithm for the BChI, called EBChI, by
utilizing the BFM properties that add at most one variable per training
instance. Furthermore, we provide an efficient representation of the BFM
(EBFM) scheme that further reduces the number of variables required
for storage and computation, thus enabling the use of the BChI for “big
N”. Finally, we conduct experiments on synthetic data that demonstrate
the efficiency of our proposed techniques.

Keywords: binary Choquet integral, binary fuzzy measure

1 Introduction

Data/information fusion can be described as the process of combining of multi-
ple inputs to provide a more accurate, concise, and/or reliable result than what
a single source can achieve on its own. Driven by the need for better results,
countless applications in many fields, such as computer vision and remote sens-
ing, have long been applying fusion at different “levels” (signal, feature, decision
etc.). Furthermore, the daily advancement in engineering technologies like smart
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cars, which operate in complex and dynamic environments using multiple sen-
sors, are raising both the demand for and complexity of fusion.

While there is a multitude of fuzzy integral (FI) variants for fusion, we focus
in this paper on the Choquet Integral (ChI), a well-known, demonstrated, and
flexible aggregation function. The ChI has been used in numerous applications
(mostly focused on decision level fusion), e.g., humanitarian demining [1], com-
puter vision [2], pattern recognition [3–7], multi-criteria decision making [8, 9],
control theory [10], and multiple kernel learning [1,11–14]. The ChI is a nonlin-
ear aggregation function parameterized by a fuzzy measure (FM), a normal and
monotone capacity. The FM is defined on the power set of the sources, i.e., on
the sets of all possible combinations of sources, and therefore has 2N variables
for N sources. With the flexibility of choosing values for these 2N − 2 parame-
ters (excluding the null set and X, which have fixed values by definition) in the
FM, the ChI covers a wide range of aggregation operators. However, this ad-
vantage comes at a price: the requirement to specify (by human) or learn (from
data) the FM. This means that the complexity of a learning problem, both in
terms of storage and computation, is on an exponential order in respect to the
number of sources. Therefore, a learning problem with the full set of variables
becomes intractable at a relatively small N . Different approaches exist to learn
the ChI from data, e.g., quadratic programming (QP) [15], gradient descent [16],
penalty/reward [17], Gibbs sampler [18], linear programming [19], and efficient
optimization with only data-supported variables [20].

In [21], we explored the binary fuzzy measure (BFM). The need to investigate
the BFM was driven by experimental findings in binary decision making for
machine learning [22]. Specifically, multiple instance learning was used to acquire
the ChI for signal processing and the learned FM had values approximately in
{0, 1} versus [0, 1]. This suggests that the underlying FM in some applications
can be binary, which motivates the use of a BFM directly rather than the real-
valued FM due to its simplicity and efficient computation. Thus, many problems
are a natural fit for the BFM and others are likely approximatable.

The BFM also has nice properties and computational advantages over the
FM. In [21], we showed that the ChI relative to the BFM is equivalent to the
Sugeno integral. We also showed that only one variable is effectively used for
the ChI computation of an observation in comparison to N variables for the real
valued FM. Moreover, only one-valued variables need be stored since zero-valued
variables can be discarded. These features make the ChI computation and its
storage (the BFM) less expensive compared to the real valued FM/ChI.

Herein, we first put forth an efficient data-driven learning method for the
BFM and subsequently the BChI, which we refer to as efficient BChI (EBChI).
Based on the fact that only one variable contributes to the BChI computation
of an instance, we can explain this for variable selection during learning. Thus,
each training instance adds at most one variable and the learning problem con-
sequently becomes scalable to the problem size. That is, the number of variables
to be optimized is no longer exponential of N , but rather linear to the number
of instances (in the worst case). This not only lessens the computation burden,
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but it also provides a more robust and generalized solution since the number of
unknowns (variables) are always fewer then the number of equations (training
instances). In contrast, the learning problem with the entire set of FM variables
is prone to overfitting as the number of training samples now becomes much
smaller than the number of variables (2N − 2) [23].

Next, we provide a representation scheme for the BFM with the minimum set
of variables, which we call the efficient BFM (EBFM). The BFM variables can
be partitioned into two groups, one-valued variables and zero-valued variables.
Among the one-valued variables, some of them can deduce their values from oth-
ers using the FM’s monotonicity property (which we call dependent variables)
while others cannot (which we call independent variables). The dependent vari-
ables can be eliminated without any loss of information and the BFM can be
represented with only the independent variables, of which there can be at most(
N
N/2

)
variables. The full set of FM variables can be retrieved from these inde-

pendent variables and vice-versa. Therefore, the independent variables constitute
the minimal BFM or EBFM.

In Section 2 we give the preliminaries of the FM, BFM, ChI, and BChI.
Section 3 describes the efficient data-driven BFM learning followed by the rep-
resentation in Section 4. In Section 5, we conduct experiments on synthetic data
to demonstrate the performance of our proposed learning method.

2 Fuzzy Measure and the Choquet Integral

Let X = {x1, x2, ..., xN} be a discrete set of N sources. A FM is a monotonic
function defined on the power set of X, 2X , as µ : 2X → <+ that satisfies:
(i) (boundary condition:) µ(∅) = 0, and µ(X) > 0 and (ii) (monotonicity:) if
A,B ⊆ X,A ⊆ B, µ(A) ≤ µ(B). Often an additional constraint is imposed to
limit the upper bound to 1, i.e., µ(X) = 1. Let h(xi) be the data/information
from the ith source. The discrete ChI (finite X) is∫

C

h ◦ µ = Cµ(h) =

N∑
i=1

h(xπ(i))
[
µ(Sπ(i))− µ(Sπ(i−1))

]
, (1)

where π is a permutation of X, such that h(xπ(1)) ≥ h(xπ(2)) ≥ . . . ≥ h(xπ(N)),
Sπ(i) = {xπ(1), . . . , xπ(i)}, and µ(S0) = 0. Equation (1) is often referred to as
the difference-in-measure form since the integral is represented as the sum of
difference-in-measure weighted by the input-values. The ChI can equivalently be
written in difference-in-inputs form as∫

C

h ◦ µ = Cµ(h) =

N∑
i=1

[h(xπ(i))− h(xπ(i+1))]µ(Sπ(i)), (2)

where h(xπ(N+1)) = 0. The latter weighted-measure form at (2) is suitable for
the FM learning problem herein, where µ is unknown. Equation 2 can also be
written in matrix form to facilitate optimization as

Cµ(h) = cTuB , (3)
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where uB is the vector of all variables except µ(∅) and has a length of 2N − 1,
and c holds the coefficients of uB for observation h.

The FM can be visualized with respect to its underlying Hasse diagram
(shown in Figure 1). Each instance yields a sort, π, which produces a walk up
the lattice. The walk starts with µ(∅) followed by N other variables, each of dif-
ferent size cardinality. For example, an observation h with h({x2}) ≥ h({x1}) ≥
h({x4}) ≥ h({x3}) walks along the path shown in Figure 1(b) and the corre-
sponding ChI has variables µ({x2}), µ({x1, x2}), µ({x1, x2, x4}), and µ(X).

{x1} {x2} {x3} {x4}

{x1,x3} {x1,x4} {x2,x3} {x2,x4} {x3,x4}

{x1,x2,x3}

X

{}

{x1,x2,x4} {x1,x3,x4} {x2,x3,x4}

{x1,x2}

(a) FM for N=4

{x1} {x2} {x3} {x4}

{x1,x3} {x1,x4} {x2,x3} {x2,x4} {x3,x4}

{x1,x2,x3}

X

{}

{x1,x2,x4} {x1,x3,x4} {x2,x3,x4}

{x1,x2}

(b) Walk for an example input

Fig. 1. (a) FM for four inputs. Arrows indicate monotonicity conditions on immediate
subsets. (b) Path taken by observation h with h({x2}) ≥ h({x1}) ≥ h({x4}) ≥ h({x3}).
Only four variables µ({x2}), µ({x1, x2}), µ({x1, x2, x4}), and µ(X) are used for the ChI.

2.1 The Binary Fuzzy Measure

As already stated, a BFM, µB , is a special case of the real-valued FM, µ, that
restricts µB to {0, 1} instead of [0, 1]. Obviously, this drastically reduces the
search space for an optimization problem. In article [21], we proved that the
BChI and Sugeno Integral are equivalent. The BChI is simply the standard
Choquet integral with respect to the BFM. Suppose the BFM values along the
walk for h are given by µB(Sπ(i)) = 0 if i < k, else 1, where µB(Sπ(k)) is the
first variable encountered along this path with value 1. Replacing the FM with
this BFM in Eq. (1) and then expanding it, the BChI can be written as [21]∫
C

h ◦ µB = CµB
(h) =

N∑
i=1

h(xπ(i))
[
µB(Sπ(i))− µB(Sπ(i−1))

]
=

(
k−1∑
i=1

h(xπ(i))
[
µB(Sπ(i))− µB(Sπ(i−1))

])
+ h(xπ(k))

[
µB(Sπ(k))− µB(Sπ(k−1))

]
+

(
N∑

i=k+1

h(xπ(i))
[
µB(Sπ(i))− µB(Sπ(i−1))

])
= h(xπ(k))µB(Sπ(k)), (4)
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since µB(Sπ(i)) − µB(Sπ(i−1)) is zero except for i = k and µB(Sπ(k−1)) = 0.
It is trivial to show with some mathematical manipulation that the BChI in
difference-in-inputs form also can be written as

CµB
(h) =

N∑
i=1

[h(xπ(i))− h(xπ(i+1))]µB(Sπ(i)) = h(xπ(k))µB(Sπ(k)). (5)

According to (4) and (5), the BChI of an instance uses only one variable µB(Sπ(k)).
This fact allows us to use significantly fewer variables than the standard ChI
(which we will show in Section 3), thus enabling the learning of a BFM for
larger number of inputs/sources problems, which otherwise would be intractable
to solve on most personal computers.

3 BChI learning

Let O = {hj , yj}, j = 1, 2, . . . ,M , be a training data set with M instances. Here
hj represents the jth instance with data from N inputs and yj is the associated
label or ground-truth for hj . For example, hj could be an image, hj({xi}) could
be the soft-max normalized decision of N different deep learners and yj = 0 if
hj is not the category of interest, e.g., person, or yj = 1 if it is.

The goal is to learn the BFM such that the aggregation results of the training
instances optimize a criteria, which is usually specified by a function of error
relative to a label, yi, called an objective function. Common functions include
the sum of squared error (SSE) [4,23,24] and the sum of absolute error. Without
loss of generality, we focus on the SSE, which is widely used due to its continuity,
differentiabiliy, and non-linearity relative to errors. The sum of squared error for
training data, O, is E(O,uB) =

∑M
j=1(CµB

(hj) − yj)2, where CµB
(hj) is the

BChI for instance hj and yj is associated label.

3.1 Learning with the full set of FM variables

Traditionally, FM learning is formulated with a full set of variables without ex-
tracting any knowledge from the training data to reduce the number of variables.
In this case, the BChI for a training instance hj is represented with a 2N − 1
dimensional vector uB , and, consequently, the SSE for training data, O, is

E(O,uB) =

M∑
j=1

ej =

M∑
j=1

(cTj uB − yj)2 = ||DuB − y||22,

where D = [c1 c2 . . . cM ]T , y = [y1 y2 . . . yM ]T , ||x||2 is norm-2 operation on
x, and uB is the vector of the 2N − 1 binary variables excluding the null set.
Based on this, the SSE optimization problem is

min
uB

f(uB) = ||DuB − y||2,
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uB(k) ≤ uB(l), if uB(k) = µB(A), uB(l) = µB(B),

and A ⊂ B, ∀k, l (monotonicity conditions)

uB(p) = 1, if uB(p) = µB(X) (normality conditions)

uB(l) ∈ {0, 1},∀l (BFM value restriction),

which can be solved by any mixed-integer, integer, or binary quadratic program-
ming library [25,26]. It is obvious that this optimization problem does not scale
well since the number of variables is exponential with respect to N regardless
of the training sample size. Moreover, its complexity would be higher than the
standard FM due to the use of integer-programming, which is in general costlier
than the real-valued counterpart.

3.2 Efficient ChI learning

Herein we propose an efficient learning algorithm that selects variables for op-
timization from the training data as opposed to using the full set of variables
in a standard method. The proposed method can drastically reduce the number
of variables; however, the amount of savings depends on different factors such
as training data volume, underlying FM, the context of the problem (noisy or
no-noise), and the acceptable error in the objective function. As shown in the
previous section, given a set of inputs, the BChI needs only one variable to de-
termine the output. The converse is also true, i.e., given a set of inputs, the
actual output (which has no noise or fluctuation) can help retrieve the variable
responsible for the BChI. In this case, the output equals the kth sorted input,
and the variable is associated with this kth input.

Suppose a training instance, hj , is not affected by noise, i.e., ej = 0, then
the output is, yj = hj(xπj(k)), and the variable corresponding to hj(xπj(k)) is
µB(Sπj(k)). Thus, just by inspecting each training instance, we can retrieve for a
noise-free problem the BChI variables with their exact values without requiring
any optimization. However, real world problems often–if not always–are affected
by noise. When noise variance is small, we can choose to select one variable per
instance by finding the sorted input k closest to the output label (which also
results in minimum error, ej), where k can be determined as

k = arg min
i
||yj − hj(xπj(i))||

2. (6)

Since the noise can be random, training instances with the same walk in the
lattice can be affected by varying magnitude of noise. Consequently, they can
pick different k’s and hence more than one variable for the same walk as opposed
to a single variable for an ideal case. Suppose, the instances hl, l ∈ {t1, . . . , tp} ⊆
{1, . . . ,M} have the same permutation, π, for their sorting order and the set of
variables picked by them using Eq. (6) are µB(Sπ(k)), k = {k1, k2, . . . , kQ} with
Sπ(k1) ⊂ Sπ(k2) · · · ⊂ Sπ(kQ). Then the BChI for hl w.r.t. these variables is

CµB
(hl) =

Q∑
q=1

[hl(xπ(kq))− hl(xπ(kq+1))]µB(Sπ(kq)), (7)
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where hl(xπ(kQ+1)) = 0. The number of selected variables is bounded in [1, N ].
For a highly noisy system, the user can choose to select multiple variables vs.

one variable per training instance and use different criteria instead of squared of
Euclidean distance as in Eq. (6), e.g., selecting variables associated with those
inputs that fall within a certain threshold (or standard deviation) of the training
label yj . While increasing the number of variables will have no impact for a
system with little noise with sufficient training samples, it can lower the SSE for
a highly noisy system with limited data. However, there is an optimum balance
between the complexity and the error as increasing variables even for high noise
case has diminishing results.

Let the set of variables selected by all the training instances (using Eq. (6))
be represented in vector form as vB . Then the EBChI of hj can be written in
matrix form as CµB

(hj) = aTj vB , where aj be the coefficient of vB calculated
according to Eq. (7). Based on this, the SSE minimization problem becomes

min
vB

f(vB) = ||WvB − y||22,

vB(i) ≤ vB(j), if vB(i) = µ(A), vB(j) = µ(B)

and A ⊂ B, ∀i, j ∈ {1, 2, . . . , Q} (monotonicity conditions)

vB(j) = 1, if vB(j) = µB(X) (normality conditions)

vB(i) ∈ {0, 1}, ∀i (BFM value restriction)

(8)

W = [a1 a2 . . . aM ]T .

4 Efficient BFM data structure

In the last section, we provided an algorithm to efficiently learn a BFM that uses
fewer variables. Anderson et al. introduced a simple approach to represent the
BFM that can be applied here to further reduce the learned variables for efficient
storage and representation. In that method, the variable elimination process
considers only the values of the variables and does not take into account the
monotonicity property of the FM, which can greatly enhance the representation
technique. By taking into consideration both values and properties, herein we
propose a new way to efficiently represent the full-fledged BFM and then we
provide an upper bound on the minimum number of variables required.

4.1 Representation

Since the variables of a BFM are binary valued, the variables can take either
zero or one values. The zero-valued variables do not contribute to the BChI,
so they can be discarded. Thus, only one-valued variables can be considered as
candidates for representation. Due to the monotonicity property, if a variable
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µB(A) is one-valued, then all variables that are supersets of A are also one-
valued. As such, the one-valued variables can be divided into two parts: (i)
independent variables whose values cannot be derived from another one-valued
variable using monotonicity condition and (ii) dependent variables whose values
can be retrieved using the independent variables and monotonicity condition,
and therefore, can be discarded. Consequently, only the one-valued independent
variables are necessary to represent a BFM, which we refer to as EBFM. Figure
2 illustrates the EBFM representation technique for an example with N = 4.

0 0 0 1

1 0 1 0 1 1

1

1

0

1 1 1

(a) Full set of FM
variables

1

1 1 1 1

1

1

1 1 1

(b) Only one-valued
variables

1

1 1 1 1

1 1 1

(c) Training vari-
ables from an
arbitrary data set

1

1

(d) Independent
variables

Fig. 2. An example of the BFM representation for four inputs case. Light gray nodes
with zeros represent zero-valued variables while dark-grey nodes with one’s denote
one-valued variables. Empty nodes are for placeholders only, and indicate that their
variables are removed. (a) shows the full set of FM variables, (b) only one-valued
variables, (c) EBChI variables selected from a noise free training data set, and (d)
EBFM represented with independent variables. The full FM lattice (a) can be simply
derived from (d) using the FM’s monotonicity property.

From the EBFM with independent variables that correspond to sets B =
{B1, B2, . . . , Bl}, the BChI of an observation hj can be computed as follows:

1. Sort inputs in descending order. Let the sorting order be xπj(i), i = 1, 2, . . . , N ,
and the associated variables for the BChI are µB(Sπj(i)), i = 1, 2, . . . , N .

2. Find the minimum k for which Sπj(k) ⊇ Bl ∈ B, ∀Bl.
3. Return hj(xπj(k)) as the output.

4.2 Upper bound

To determine the upper bound on the number of variables in EBFM, we use
a theorem by E. Sperner [27]. The theorem proves that if B1, B2, . . . , Bt are
subsets of an N -element set B, such that no Bi is a subset of any other Bj , then

t ≤
(

N

[N/2]

)
, (9)

where [x] denotes the rounded integer value. As the independent variables in
EBFM have the same definitions as the Bis above, Eq. (9) also gives the upper
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bound on the number of variables in the EBFM. For 20 inputs, there can be at
most 184, 756 independent variables (in median-like aggregation case), thus using
only 17.62% of the total variables in the worst case. However, the actual usage
(or saving) depends on the specific BFM; for example, min and max aggregation
operators require 1 and N variables respectively.

5 Experiments

Experiments are conducted on synthetic data set for the following reasons. First
and foremost, we know the true underlying BFM, which facilitates the compari-
son and investigation of the proposed method’s behaviour, whereas in real world
applications/data the true FM may never be known. Moreover, it is quite chal-
lenging to find real world examples of varying complexity while it is far easier to
create a FM in synthetic data with different complexity. Synthetic experiments
also give us insight into how the learning method will behave in different noisy
contexts. The experiments are designed to compare the computational complex-
ity as well as to measure the performance in terms of MSE from the predicted
test labels using the learned BFM in a no noise as well as in a noisy environment.

5.1 No noise scenario

First, a training data set of M = 500 and N = 8 is generated pseudo-randomly
from a uniform distribution, which is then partitioned to create five data-sets
for five fold cross-validation. Each cross-validation data-set contains 400 train-
ing samples and 100 test samples. Then we created training data-sets of sample
sizes 150, 75, 30, and 15 via random selection of instances from those of 400,
150, 75, and 30 respectively. Test data for all sample sizes remains the same.
We specified three BFMs–BFM1, BFM2 and BFM3–in Table 1 using the EBFM
representation with independent variables. In the table, each independent vari-
able is denoted with the inputs’ indices in the set, e.g., 12 stands for independent
variable µB({x1, x2}). The independent variables in BFM1 lie in the lower part
of the lattice (hence largest number of one valued variables) while those of BFM3
reside on the upper part. The BFM2 independent variables spread across the lat-
tice from top to bottom. The labels for these BFMs are created without adding
any noise, which also serve as the ground-truth for noisy system.

Table 1. The FMs used in the experiment

BFM Independent variables #var # 1-var

1 8 56 67 57 345 346 347 1234 1235 1245 1236 1246 1237 1247 255 211

2 3568 3578 3678 4568 4578 4678 5678 12568 12578 12678 123458 123468 123478 1234567 255 59

3 67 68 78 123456 123457 123458 255 131

Figure 3 shows the results for different sample sizes. As can be seen, the
number of variables increases linearly at small M , then remains constant for
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large sample sizes, which is still far fewer than the standard optimization method.
The average of the MSE as well as the number of variables correctly learned are
approximately the same for both standard and EBChI (Figure 3(b) and (c)).
An interesting observation from Figure 3(d) is that the EBChI has far fewer
independent variables for 15 training samples, meaning the learned FM from
the EBChI is less complex than the standard one.
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Fig. 3. Noise-free training data of different sizes, M = 15, 30, 75, 150, and 400.

5.2 Noisy scenario

In most analysis of noisy systems, noise is modeled as Gaussian distribution,
which provides a good approximation in many scenarios. Herein, we model the
output as y = CµB

(h) + ε, ε ∼ N (0, σ2
n). The observations in the training

data are the same as those for the noise-free system; however, the labels are
created by adding randomly generated values from a normal distribution of
variance σ2

n. We conducted experiments with five different variances, σn/σy =
{0, 0.01, 0.05, 0.1, 0.3, 0.5}, where σ2

y is the variance of the true labels (actual la-
bel without noise). The standard deviations for FM1, FM2, and FM3 are 0.184,
0.1804, and 0.2055. The MSE was measured with respect to the true test labels.

Figure 4 compares the results for noisy data with 400 training samples. More
noise means more variations around the true value, which results in selection of
multiple variables for instances with the same sorting order. Thus, the number of
training variables in EBChI increases with the noise level. The presence of noise
equally affects both the EBChI and the standard BChI. When the FMs are
learned with sufficient number of samples, the error is minimal–on the order of
10−3 (Figure 4(c))–and there is a mismatch of only 4 out of 255 variables in the
worst scenario; see Figure 4(c). As the result shows, both the standard method
and EBChI are resilient to relatively moderate level of noise (σn/σy = 0.3).

6 Conclusion

In this paper, we proposed an efficient method to learn the BFM. Variable se-
lection in the EBChI is driven by the observed instances whereas the standard
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Fig. 4. Results for data-driven learning with noise, with standard deviation, σn =
{0.0σy, } . (a) average number of training variables over five iterations, (b) average
mean squared error on test data, (c) average number of variables correctly learned, (d)
corresponding independent variables

learning method uses full set of variables. This makes the EBChI tractable for
a relatively large problem (large N) in contrast to the standard approach. As
demonstrated by the results, learning with the EBChI is approximately equiv-
alent to the standard BChI learning method for noisy and noise-free scenarios;
therefore, it provides an efficient alternative for data-driven learning of the BFM.
Moreover, we introduced a representation technique called the EBFM to describe
a BFM minimally via independent variables. In future work, we will apply our
technique to real world problems. Additionally, we will study which problems
can be natural fit to BFM and which problems can be approximated by a BFM.
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