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Abstract—Pedestrian detection is an important task for
human-robot interaction and autonomous driving applications.
Most previous pedestrian detection methods rely on data collected
from three-dimensional (3D) Light Detection and Ranging (Li-
DAR) sensors in addition to camera imagery, which can be expen-
sive to deploy. In this paper, we propose a novel Pedestrian Planar
LiDAR Pose Network (PPLP Net) based on two-dimensional (2D)
LiDAR data and monocular camera imagery, which offers a far
more affordable solution to the oriented pedestrian detection
problem. The proposed PPLP Net consists of three sub-networks:
an orientation detection network (OrientNet), a Region Proposal
Network (RPN), and a PredictorNet. The OrientNet leverages
state-of-the-art neural-network-based 2D pedestrian detection
algorithms, including Mask R-CNN and ResNet, to detect the
Bird’s Eye View (BEV) orientation of each pedestrian. The
RPN transfers 2D LiDAR point clouds into occupancy grid
map and uses a frustum-based matching strategy for estimating
non-oriented 3D pedestrian bounding boxes. Outputs from both
OrientNet and RPN are passed through the PredictorNet for a
final regression. The overall outputs of our proposed network
are 3D bounding box locations and orientation values for all
pedestrians in the scene. We present oriented pedestrian detection
results on two datasets, the CMU Panoptic Dataset and a newly
collected FCAV M-Air Pedestrian (FMP) Dataset, and show that
our proposed PPLP network based on 2D LiDAR and monocular
camera achieves similar or better performance to previous state-
of-the-art 3D-LiDAR-based pedestrian detection methods in both
indoor and outdoor environments.

Index Terms—Human Detection and Tracking, Computer Vi-
sion for Automation, Recognition

I. INTRODUCTION

WHEN mobile robots (e.g. autonomous vehicles) interact
with pedestrians, it is essential to accurately detect

pedestrian location and orientation for pedestrian intent recog-
nition and collision-free navigation. LiDAR and camera sensor
data can provide depth and color information and are widely
used in combination for pedestrian localization and detection
[1]–[5].
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Three-dimensional (3D), multi-layer LiDARs are one of the
primary sensors in a typical perception system installed on an
autonomous vehicle today. 3D LiDAR scans the environment
with many beams of light in all directions and returns 3D
point cloud data of objects and environments. However, 3D
LiDARs can be cost prohibitive for many applications with
sensors costing upwards of $100,000 for a Velodyne Alpha
Puck [6], for example. In addition, 3D LiDAR point cloud
data is computationally intensive to process due to its density
and high resolution.

In contrast, a two-dimensional (2D) LiDAR, also known
as planar LiDAR, is relatively inexpensive. For example, a
Hokuyo UTM-30LX-EW planar LiDAR used in our exper-
iments costs around $4,500, which enables much less ex-
pensive deployment. Planar LiDAR also conserves memory
and computation resources as the relative volume of data is
much smaller. Prior art in this field [7]–[9] has looked at
using planar LiDAR for pedestrian detection. However, these
works mainly focus on 2D pedestrian tracking and image
classification applications and did not address 3D pedestrian
location detection and orientation estimation.

In this paper, we propose a novel Pedestrian Planar LiDAR
Pose Network (PPLP Net∗) that can perform 3D oriented
pedestrian detection based on 2D LiDAR data and monocular
camera imagery. To our knowledge, our work is the first
that achieves accurate 3D pedestrian detection and orientation
estimation based solely on 2D LiDAR and monocular images.
We envision our work providing an inexpensive alternative to
applications where cost, size, weight, and processing power
constraints limit the application of other 3D-LiDAR-based ap-
proaches. The main contributions of this paper are summarized
as follows:
• We propose a novel end-to-end deep neural network

architecture for oriented 3D pedestrian detection based
on 2D LiDAR data and monocular camera imagery. Our
method does not require 3D LiDAR, which can poten-
tially reduce the cost of sensor setups when deploying
robots in real applications.

• We propose OrientNet, an image-based orientation detec-
tion method to estimate the Bird’s Eye View (BEV) ori-
entation of pedestrians directly from 2D monocular RGB
images based on an intermediate silhouette representation
inspired by [10], which significantly improved orientation
estimation accuracy.

∗The PPLP code is available at https://github.com/BoomFan/PPLP.
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• We provide quantitative results of our method on the
CMU Panoptic Dataset [11]–[13] for indoor environ-
ment performance evaluation. We also collected an addi-
tional public dataset, the FCAV M-Air Pedestrian (FMP)
Dataset, at an outdoor environment, and provide bench-
mark results for pedestrian detection using 2D LiDAR
and monocular camera from this new dataset.

• We add occupancy grid encoding to previous state-of-the-
art method AVOD and show in an ablation study that our
method, with added occupancy grid encoding, can detect
pedestrians even under heavy occlusion.

II. RELATED WORK

The oriented pedestrian detection pipeline consists of two
parts, pedestrian detection and orientation estimation. In this
section, we review pedestrian detection methods based on 2D
and 3D LiDAR and related feature-based orientation estima-
tion methods.

Pedestrian Detection based on 2D/3D LiDAR: 3D Li-
DAR provides dense point cloud returns and can help detect
and localize pedestrians reliably. Thus, 3D LiDAR has been
used predominantly for pedestrian detection in the literature
[14]–[18]. Recent methods, such as AVOD [1], MV3D [19],
Frustum PointNets [2], and PointPillars [4], employ deep
neural network architectures and can achieve high detection
performance by learning complex features of objects from 3D
point clouds. The drawback, as discussed in the Introduction,
is that 3D LiDAR can be expensive to purchase, and their
data can be expensive to process and store. On the other
hand, 2D LiDAR provides single-layer point cloud and is
relatively inexpensive to set up. However, few works exist that
exploit 2D LiDAR for detection tasks. Arras et al. [20] applied
the AdaBoost algorithm to learn a robust classifier to detect
people in 2D range data from LiDAR in a cluttered office
environment. Shao et al. [21] used laser range scanners to track
the feet movement of multiple pedestrians. Other work such as
[7], [9], [22], [23] fuse information from both 2D LiDAR and
RGB camera images to perform object detection. However,
these methods focus mostly on 2D pedestrian classification
and cannot handle 3D pedestrian detection and localization. In
this work, we seek to fill in the gap and perform 3D pedestrian
detection while relying on 2D LiDAR as a simpler alternative.

Orientation Estimation: In addition to location detection,
it is important to estimate pedestrian orientation to facilitate
applications such as intent recognition, trajectory prediction,
and social interaction. A common approach for estimating
the pedestrian orientation from a single-frame image is to
treat it as a multi-classification problem by discretizing the
orientations into fixed number of bins [24], [25]. Another
approach is to address the task as a continuous regression
problem [26]–[28]. However, these methods are all based
on hand-crafted image features. Some methods, such as [2],
[29], take a hybrid approach of first classifying angles into a
discretized set of bins and then regressing them to ground-
truth values within each bin for further angle refinement.
Deep learning methods such as [30] can directly regress
bounding box orientations of objects together with bounding

box locations. Most recently, the SilhoNet method [10] has
been shown to achieve top performance for object pose esti-
mation from monocular camera images. SilhoNet first predicts
an intermediate silhouette representation based on monocular
camera images and its translation vectors, and then regress
the 3D object orientation based on the predicted silhouette
representation. Our work follows a similar architecture to [10].
However, instead of just using object silhouettes, our network
also uses pixel-level feature masks from Mask R-CNN [31]
as an additional input to further improve the accuracy of
orientation estimation.

III. PPLP NETWORK

The proposed PPLP Net consists of three sub-networks, an
Orientation Network (OrientNet) for orientation estimation, a
Regional Proposal Network (RPN) for generating non-oriented
pedestrian bounding box proposals, and a PredictorNet for
regressing over ground truth bounding boxes and making
final predictions of oriented pedestrian bounding boxes. Sec-
tions III-A, III-B, and III-C describe the three subnets in detail.
Fig. 1 shows the complete flowchart for our proposed network.

A. OrientNet

In the OrientNet, RGB images from monocular cameras
were first resized to 1024 × 1024 and were passed through
a pre-trained† Mask R-CNN network [31]. We chose Mask
R-CNN network as it can simultaneously output 2D bounding
boxes, pixel-level masks for pedestrian locations, and feature
maps (predefined 17 body key-points). Then, the cropped
RGB image with masks generated from Mask R-CNN were
passed into a ResNet-18 [32] architecture, followed by a fully
connected layer, to predict the orientation of each image crop
in quaternion form. We use the quaternion representation for
the orientation angles following [10] since it does not suffer
from gimbal lock like the Euler angle representation.

As discussed in [10], true object orientation can vary
depending on the camera viewpoints. That is to say, the
orientation value of a pedestrian will be different if the
pedestrian is at the center of the camera image versus at the
edge. In order to prevent such visual ambiguity and to have
a consistent quaternion orientation value for all viewpoints,
we transformed all orientations into an “apparent coordinate
system”, where the apparent orientation is estimated as though
the image crop (also referred to as region of interest/ROI
in [10]) were extracted from the center of the image‡.

With the help of the above transformation, the OrientNet
can be trained effectively for all pedestrians at different 3D
locations using the same loss function, defined as

Lossorient = Loss(q̃, q) = log(ε+ 1− |q̃ · q|), (1)

where q and q̃ are the pedestrian quaternion in the apparent
frame and the predicted quaternion for each pedestrian, re-
spectively. The loss defined above is a negatively decreasing

†The pre-trained model is available at https://github.com/Superlee506/
Mask RCNN Humanpose/releases.
‡Details about this transformation between camera inertial coordinates

and apparent coordinates are provided in the supplementary file.



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2962358, IEEE Robotics
and Automation Letters

BU et al.: PPLPNET 3

Input: Color Image

Predefined Anchor Grids
      (Top-down View)

Input: BEV Occupancy Grid Map

Output

Resize

Crop

Orient Net

2D Masks

Angle quaternion

Region Proposal Net

BEV Feature Maps

Predictor Net

Legend

Fully Connected 
Layer

1x1 Convolutional
Layer

Dropout

Non-Maximum
Suppression

Flatten

Orientation Adjustment

Feature Extractor
(Mask RCNN)

Resnet-18

Anchor Candidate
Selection Pedestrian Feature maps 

with masks Objectness

2D Bounding-boxes

Fusion (concatenate)

Feature Extractor
(VGG-16)

Anchor Candidates

Classes 
(Output)

Bounding-boxes Shifts
(Output)

Shifted Anchors

Bounding-boxes Shifts

7 m

8 m

            Groundtruth
 Predictions  

Fig. 1: Overall architecture of our PPLP network. The left column are inputs: RGB images from monocular camera, predefined
anchor grids, and BEV occupancy grid map generated from 2D LiDAR signal. The center of this figure shows the three
sub-networks: OrientNet for orientation estimation (Section III-A), Region Proposal Net (RPN) for proposal generation
(Section III-B) and PredictorNet for final regression (Section III-C). The right column shows a set of example outputs: estimated
3D bounding boxes with location and orientation (in BEV and side view) for all pedestrians in the scene.

loss that is always smaller than zero. The ε parameter is a
small value to prevent the loss from going to negative infinity.
We set ε = 10−4 in our experiments, following [10].

B. Region Proposal Network (RPN)

The RPN takes Mask R-CNN feature maps from the Orient-
Net as well as 2D LiDAR data as inputs and generates non-
oriented pedestrian bounding boxes (“proposals”) for pedes-
trian location detection.

1) Predefined Anchor Grids: We first generate a set of pre-
defined 3D anchor grids to cover all detection areas (8m×7m)
in the scene. Each grid is half a meter apart as suggested in
[1] and represents a candidate proposal. Each 3D anchor has
a fixed axis-aligned size of (dx, dy, dz) determined from the
pedestrian ground truth bounding boxes in the training data,
following the discussion in Section III-C in [1].

2) Occupancy Grid Map: We use an occupancy grid map
encoding for the 2D LiDAR signals. We evenly divide our
8m× 7m detecting area into 0.01m× 0.01m cells, resulting
in a 700 × 800 BEV grid map. Each cell in the BEV grid
map is encoded using one of the three states: free (cell value
equals “0”), occupied (“1”), or occluded (“-1”). The occupied
state means the cell is occupied by a LiDAR signal (indicating
the presence of objects), free/unoccupied state shows there is
no pedestrian or other objects, and occluded state indicates
there may or may not be an object due to occlusion (such as
a pedestrian behind occluding objects or another pedestrian).
The Bresenham’s line algorithm [33] was used to find all

occluded cells where LiDAR ray scans cannot reach. Then,
the encoded occupancy grid map was passed into a modified
version of the VGG-16 network [34] to extract feature maps
for bounding box proposal generation, similar to [1].

3) Anchor Candidate Selection: To select the potential
anchors from all predefined 3D anchors, we use a frustum-
based selecting strategy inspired by [2] in our RPN. For each
2D bounding box detected by Mask R-CNN, our selecting
strategy projects all predefined 3D anchors onto the camera
image and the occupancy grid map defined above, assuming
the camera parameters are known. If the projection of a 3D
anchor on the camera image overlaps with the Mask R-CNN
2D bounding box, and if its projection on the occupancy grid
map contains at least one occupied cell, this 3D anchor will
be selected as a matched candidate for that Mask R-CNN 2D
bounding box. Figure 2a shows an example of four Mask R-
CNN 2D bounding boxes and Figure 2b shows the projected
boxes of their matched 3D anchor candidates. Figure 2c shows
the same 3D anchors as Figure 2b but projected on the BEV
occupancy grid map.

4) Fusion (Concatenate): Next, in the regions where all
anchor-candidates are located, the BEV feature maps and
Mask R-CNN feature maps are cropped, resized and concate-
nated to form a multi-view feature map vector. To eliminate
noise from background or neighboring pedestrians, the back-
ground (non-pedestrian) pixel values of Mask R-CNN feature
maps are set to zero.



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2962358, IEEE Robotics
and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019

(a) (b) (c)

Fig. 2: An example showing the RPN anchor candidate selecting strategy. (a) 2D bounding boxes (dashed color line) and
pixel-wise masks (solid colors) on an RGB image detected by Mask R-CNN. (b) The projection of all matched 3D anchor
candidates (solid color boxes) on the same RGB image. (c) The Bird’s Eye View of all matched 3D anchor candidates (solid
color boxes). In this example, all the occupied anchors on the occupancy grid map are selected as final candidates. Colors of
the pedestrian and their anchor candidates are matched. Some of the anchors may be used more than once if their projected
2D boxes overlap with more than one Mask R-CNN result.

5) RPN proposals: Finally, the fused feature vector from
previous step is passed through three convolutional layers
followed by two fully-connected branches, one for determining
objectiveness (pedestrian or not) and the other to calculate the
relative shifts in bounding box location of each anchor with
respect to their predefined centroid coordinates (the bottom
center point of the predefined 3D anchors).

For each pedestrian in the RGB image, the fully connected
layer generates a set of potential 3D bounding boxes (propos-
als) and returns their associated objectness scores. To avoid
a large number of proposals, the proposed RPN reduces the
number of proposals by performing Non-Maximum Suppres-
sion (NMS) [35]. The NMS selects only the proposal bounding
boxes that have highest objectness score (highest probability
of being a pedestrian) and prune all other boxes with high
IoU (Intersection over Union). An IoU threshold of 0.8 in the
top-down-view is used in our model.

C. PredictorNet

The pedestrian feature map obtained from OrientNet and
the BEV feature map obtained from RPN are passed into
the PredictorNet for final prediction. Both feature maps are
cropped and resized into 14 × 14, based on the new anchor
proposals from RPN, and concatenated pair by pair. These new
feature pairs are then flattened as an one-dimensional vector
followed by three fully connected layers. The fully connected
layers generate two outputs, one is the class label (pedestrian
or non-pedestrian) for each anchor candidate, and the other is
the relative shift value in bounding box locations and height, as
described in Section III-C of [1]. Dropout layers are applied at
a rate of 0.5 between each linear layers to prevent over-fitting
during training.

The PredictorNet is trained together with the RPN. The
total loss is the summation of RPN loss and PredictorNet
loss. Both loss function consists of classification loss and
regression loss. The classification loss computes the cross-
entropy between predicted classification logits and the ground
truth classification vectors. Similar to [1], the regression loss
is a smooth L1 loss for all relative location shifts, following

Eq. (3) in [36]. Our network only calculates the average loss
for candidate anchors that have at least 0.55 IoU in BEV with
the ground truth bounding boxes.

At the end of PredictorNet, we apply another NMS layer
to prune the bounding box proposals, similar to the end of
Section III-B. The NMS layer with IoU threshold of 0.01
was executed at the end of PredictorNet for final adjustment,
following [1]. After generating the location for each predicted
pedestrian, the PredictorNet adjusts the orientations that are
fed from OrientNet. As discussed in Section III-A, to revert
the orientation error caused by camera viewpoint, the 3D
orientations for each pedestrian should be rotated from their
apparent frame to inertial frame based on the viewpoint
decided by their location predictions.

The detection outputs from the NMS module and the
adjusted orientations are our final outputs of PPLP Network,
which are the estimated oriented 3D bounding boxes for each
pedestrian in the scene.

IV. DATASETS AND EXPERIMENTAL SETUP

In this paper, we conduct experiments on the CMU Panoptic
Dataset [11]–[13] as it contains annotated pedestrian camera
imagery as well as Kinect point cloud data, which is dense
enough to extract 2D-LiDAR-like signals reflected from each
pedestrian at the height of their waists. We also collected an
additional 2D LiDAR and monocular camera dataset from a
mobile robot in an outdoor environment for further evaluation.

A. CMU Panoptic Dataset

The CMU Panoptic Dataset [11]–[13] provides RGB-D data
from a massive multi-view system of 480 VGA cameras,
31 HD cameras, and 10 Kinect v2 RGB-D sensors inside
a Panoptic Studio [13]. This dataset contains annotated 3D
body pose, 3D hands, and facial key-point markers of multiple
groups of people with varying poses and occlusion levels. In
this experiment, we chose “Kinect 50 01” to be our source
data as it is horizontally well-aligned with the ground surface
and it has the best view of the entire human body.A one-
centimeter horizontal slice around human belly/hip position
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is extracted from the 3D point clouds to synthesize planar-
LiDAR-like signals. From the available 3D body pose data, a
3D bounding box for each pedestrian is generated as ground-
truth, parallel to the ground in the direction the two shoulders
are heading. The number of pedestrians varies from two to
seven in a frame in training and validation data. A sample
image from this dataset can be seen in Fig. 3§.

B. FCAV M-Air Pedestrian (FMP) Dataset ¶

The CMU Panoptic dataset was collected in an simulated
indoor setting. To evaluate how well our model performs in
an outdoor environment, we built a mobile robot platform and
collected an additional dataset in an outdoor environment using
the “M-Air” facility‖ at the University of Michigan campus
in Ann Arbor, MI, USA in January 2019. This dataset was
recorded using an HD camera and a Hokuyo UTM-30LX-EW
planar LiDAR mounted on a ROS-enabled Segway robot. A
Qualisys Motion Capture system was used to record shoulder
key-points of pedestrians for ground truth data. A sample
image from this dataset can be seen in Fig. 5.

V. EXPERIMENTAL EVALUATION

This section presents our experimental results on both the
CMU Panoptic dataset and the FMP dataset.

A. Baselines: AVOD

We compared our method with three variations on the state-
of-the-art 3D object detection algorithm, AVOD [1]. Note that
the AVOD method was originally designed to work with 3D
LiDARs signals, where it uses a five-layer tensor to represent
the height map of the full 3D point clouds and an additional
layer for the density map (see Section III-A in [1]). In the
CMU dataset, the full 3D point clouds from the depth camera
were available, so we were able to train and test the original
3D AVOD model using 3D point clouds. We call this method
AVOD(3D/3D). We also trained an AVOD model using 3D
point clouds and tested the 3D AVOD model on the extracted
2D-LiDAR-like signals, called the AVOD(3D/2D) method. For
the testing data in this AVOD(3D/2D) method, we fit the 2D
LiDAR point clouds into the five-layer height map with most
layers other than the given 2D signal slice being padded with
zero values. In addition, to train the AVOD method for 2D
planar LiDAR signals, we adapted the original AVOD five-
layer height map tensor to a one-layer tensor while keeping
the density map the same. This adapted 2D AVOD model can
be trained and tested with 2D LiDAR point clouds directly
and we call this method AVOD(2D/2D).

§The specific sequences used and data statistics are provided in the
supplementary file.
¶The FMP dataset is available at https://github.com/umautobots/FMP-

dataset.
‖M-Air: https://robotics.umich.edu/mair/.

B. Evaluation Metrics

We evaluated our performance using following three met-
rics, same as the KITTI dataset [30]: 2D Average Precision
(AP), BEV AP, and BEV Average Orientation Similarity
(AOS). 2D AP and BEV AP evaluates the location detection
performance only, and AOS evaluates both orientation and
detection accuracy. The mathematical definition of AOS can
be found in [30] and it reflects the overall Recall scores while
each True Positive detection is weighted by the precision of
its orientation. In our experiments, the IoU threshold of 2D
AP is set to be 0.5 and the IoU threshold of BEV AP is 0.25,
following [1].

C. Results on the CMU Panoptic Dataset

Table I provides a quantitative comparison of the detection
performance across all methods on the CMU dataset. Figure 3
provides a visual sample result for our proposed PPLP method
and all baseline AVOD models. Figure 3 shows all detection
results with classification scores greater than 0.3.

Figure 3a and 3b and the second and third columns in
Table I show the comparison between AVOD(3D/3D) and
AVOD(3D/2D) models. They were both trained with full
3D point clouds provided in the original CMU dataset and
tested on full 3D LiDAR versus extracted 2D LiDAR signals,
respectively. As can be seen in Figure 3b, the AVOD(3D/2D)
model failed to detect the pedestrian on the right because both
height and density information in the point clouds drastically
decreased when using 2D LiDAR data. The orientation esti-
mation of the pedestrian in the middle by the AVOD(3D/2D)
model was also less accurate because of the lack of 3D
information.

Figure 3b and 3c and the third and fourth columns
in Table I show the comparison between AVOD(3D/2D)
and AVOD(2D/2D) models. The AVOD(3D/2D) was trained
on the full 3D point clouds while AVOD(2D/2D) was
adapted to fit the one-layer signal. We observed that the
AVOD(2D/2D) model obtained better orientation results
than the AVOD(3D/2D) model, which makes sense as the
AVOD(2D/2D) were trained and tested on the same domain.
However, the detection results were still subpar (about 70%).
Moreover, we found that the AVOD(3D/2D) model tend to
detect more false positives than the AVOD(2D/2D) model,
which means the AVOD(3D/2D) model are more sensitive to
noise signals, such as the points reflected from the wall.

Figure 3c and 3d and fourth and sixth columns in Table I
show the comparison between AVOD(2D/2D) model and our
proposed PPLP(2D/2D) method on 2D point cloud data. We
observe that our proposed PPLP network achieves higher
location detection and orientation estimation accuracy by a
large margin (20%-40%) than comparison AVOD (3D/2D)
and AVOD (2D/2D) methods (all tested on 2D data). Our
PPLP network also correctly detects the person on the right
in Figure 3d while both AVOD (3D/2D) and AVOD (2D/2D)
methods missed.

Note that the second column (AVOD 3D/3D, greyed) in
Table I shows the performance of AVOD method trained on
full 3D point clouds and tested with 3D point cloud (not
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(a) AVOD (train/test : 3D/3D) (b) AVOD (train/test : 3D/2D) (c) AVOD (train/test : 2D/2D) (d) PPLP (train/test : 2D/2D)

Fig. 3: Results on CMU Panoptic Dataset. The first row of images are the results in Bird’s Eye View within the detection
area. The second row of images are the results on the camera view. Blue dots show the synthetic LiDAR signals; Red boxes
with red orientation vectors are the ground-truths; Cyan boxes with cyan orientation vectors are the predictions. Same for all
following figures.

2D) and thus is not a fair comparison against all other test
results on 2D data. Nevertheless, we included this column as
an upper bound to show how 3D-point-cloud-based algorithm
behaves if provided with full 3D LiDAR signals. Since the
3D point clouds contain more information for pedestrian
location and contours than 2D point clouds, we observed, as
expected, that this AVOD(3D/3D) method was able to yield
high detection accuracy. However, it is worth noting that our
proposed PPLP method, trained on 2D LiDAR data only, can
achieve comparable (only about 2-5% worse) performance
with the AVOD method trained and tested on full 3D LiDAR
point clouds.

TABLE I: Experimental results on the CMU Panoptic dataset.
The second row shows different training and testing combina-
tions.

Method Name AVOD Ours
height-
density

occupancy
(proposed)

Pointclouds
(train/test)

3D/3D 3D/2D 2D/2D 2D/2D 2D/2D

pedestrian 2D
detection AP

94.2 58.2 76.7 86.6 89.3

pedestrian
BEV AP

94.4 58.1 77.0 89.4 92.2

pedestrian
BEV AOS:

93.0 35.2 72.7 86.3 90.4

We also conducted an ablation study to observe the effect
of adding occupancy encoding. We compared the proposed
method with a version of our method without the occupancy
encoding, similar to AVOD’s BEV encoding. We call this
method “Ours (height-density)”. The results without and with
occupancy encoding were reported in the last two columns

of Table I. We observed that our proposed full version
(with occupancy encoding) outperforms the non-occupancy-
encoding version by approximately 3% accuracy in terms of
BEV AP for location detection, and 4% in terms of BEV AOS
for orientation estimation. A visual example was shown in
Figure 4, where the leftmost pedestrian (shown with the blue
overlay mask) was heavily occluded by the second pedestrian
from the left (orange mask). Without the proposed occupancy
encoding with occlusion information (using just AVOD’s BEV
encoding), the detector failed to detect the occluded leftmost
pedestrian in blue as shown in Figure 4a. On the other hand,
our proposed occupancy encoding method helps generate
locations and orientation estimations for all three pedestrians
in the scene, as shown in Figure 4b.

We also conducted additional ablation studies on the effect
of OrientNet and results are provided in the supplementary
file.

D. Results on the FMP Dataset

The FMP dataset was collected with only a 2D planar
LiDAR and a monocular camera without full 3D LiDAR
data, so we do not compare with the AVOD(3D/3D) method
in this section. We trained the AVOD(3D/2D) model on the
CMU Panoptic dataset with 3D point clouds, and trained
AVOD(2D/2D) model and our proposed model on the modified
CMU Panoptic dataset with 2D point clouds. Then, we fine-
tuned all three models with the 2D FMP dataset. We tested
all models with the same FMP test dataset.

Table II shows the quantitative comparison results on the
FMP dataset. As mentioned in Section V-C, the AVOD(3D/2D)
model is more sensitive to the noise than the AVOD(2D/2D)
model, which makes the AVOD(3D/2D) model behave worse
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(a) AVOD’s BEV encoding (b) Our occupancy encoding

Fig. 4: Performance of different encodings under occlusion.
The first row of images are the results on the BEV map of two
different encodings. In column (a), the top left image shows
the density map of the AVOD method. The dark blue color
corresponds to zero density value, the white circle shows the
zoom-in view of the BEV map around a person, with more
yellow color corresponding to higher density. In column (b),
the top right image shows the occupancy map of our proposed
method. The dark blue color corresponds to occluded space,
the green color corresponds to free space, and the yellow
points in zoom-in view corresponds to the occupied cells as
described in Section III-B2. The second row shows the results
of both methods in the camera view.

than the AVOD(2D/2D) model in the CMU Panoptic dataset.
However, for the FMP Dataset, there is less noise in the
dataset as the data collection area has less obstacles than the
CMU Panoptic dataset. For this reason, we observed that the
AVOD(3D/2D) model performs better than the AVOD(2D/2D)
model in the FMP dataset (second and third columns in Ta-
ble II). The last column of Table II shows the detection results
of our proposed PPLP method against comparison AVOD
models. We observed that our proposed method outperforms
both the 2D and 3D AVOD models across all evaluation
metrics. Figure 5 shows a visual example of the detection
results on the FMP dataset. As can be seen, the location
and orientation estimation by our method better matches the
ground-truth than comparison AVOD methods.

VI. CONCLUSIONS
In this paper, we proposed PPLP, an end-to-end network for

3D pedestrian detection based on 2D LiDAR and monocular
imagery. Evaluated on two distinctive datasets, we show that
our proposed method, based solely on 2D LiDAR data, can
achieve comparable or better results with the state-of-the-art
3D-LiDAR-based AVOD method in both pedestrian location
and orientation detection in both indoor and outdoor environ-
ments. By proposing OrientNet, a subnet in PPLP leveraging

TABLE II: Experimental results on the FMP dataset. The
second row shows different training and testing combinations.

Method Name AVOD Ours (proposed)
Pointclouds
(train/test)

3D/2D 2D/2D 2D/2D

pedestrian 2D
detection AP

90.1 46.1 96.8

pedestrian
BEV AP

90.1 46.1 96.7

pedestrian
BEV AOS:

68.9 38.3 77.3

the Mask R-CNN [31], we show that a pedestrian’s bird’s-eye
view orientation can be accurately and directly estimated from
2D RGB imagery. Our method also improves the accuracy of
pedestrian detection, especially for partially occluded pedes-
trians, by using a frustum-based candidate selecting strategy
in our region proposal network.

One drawback we observed from our results such as
Figure 4 is that when a pedestrian is heavily occluded by
others, the orientation of the occluded pedestrian could be
occasionally incorrectly matched to another person’s image
mask, thus causing errors in orientation estimation. Future
work will include investigating new methods to correct the
mask matching problem and further improve the detection
performance.

Currently, there are limited datasets for 2D LiDAR and
monocular camera. Future work will include collecting and
applying our methods across more planar LiDAR and monoc-
ular camera datasets to explore in-the-wild pedestrian behavior
in varied settings. Our method currently takes approximately
1.2 seconds per frame to compute; we will seek to improve
the computation time in our future work. Alternative methods
for improving orientation accuracy can also be explored.
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I. COORDINATE SYSTEMS

We define a camera inertial coordinate system shown in
Fig 1 with blue arrows. The origin of the camera inertial
coordinate system is the top left corner of the camera image,
the x-axis is pointing right along the image width direction,
the y-axis is pointing down along the image height direction,
and the z-axis is defined by the right-hand rule. We then
define an apparent coordinate system for each pedestrian
based on the location of their center of mass, as shown in
Fig 1 with green arrows. During training, to reduce the error
caused by different viewpoints, we transform all ground-truth
orientations to the apparent coordinate system using

VA = (RIA(α, β, γ))−1 · VI , (1)

where RIA(α, β, γ) is the rotation matrix that rotates the
camera inertial coordinate frame into the apparent coordinate
frame; α, β, γ = 0 are the corresponding yaw, pitch, and
roll angles; VA is the ground-truth orientation vector in the
apparent frame; and VI is the ground-truth orientation vector
in the camera inertial frame.

α
β

X

Y

Z

X

Y

Z

Floor plane

Camera
(Inertial)

Pedestrian
(Center of Box)

X’

Y’

Z’

Camera
(Apparent)

Fig. 1: Relationship between camera inertial coordinates and
apparent coordinates.

II. DATASET SPECIFICS

A. CMU Panoptic Dataset

In the CMU Panoptic Dataset, all coordinates (point
clouds and label data) were translated to Kinect cam-
era reference frame. From a total of 65 sequences (5.5
hours), five sequences were used in our experiments:
“160422 ultimatum1”, “160226 haggling1”, “160422 haggling1”,
“160224 haggling1” and “171204 pose3”†. These are the only

*{fanbu, trle, xiaodu, ramv, mattjr}@umich.edu
This work is supported by the Ford Motor Company via the Ford-UM

Alliance under award N022977 and by the Office of Naval Research under
Award Number N00014-18-1-2575.
†Dataset available at http://domedb.perception.cs.cmu.

edu/dataset.html.

sequences that have ground truth information from body key-
points, high-resolution Kinect RGB-D data available. They
also contain the most people in the scene. The “171204 pose3”
sequence only has a single person performing a range of
actions and we added it to enrich data variety in the training
set. Within those five sequences, “160224 haggling1” (8525
frames) is reserved as a testing set. Frames from the remain-
ing four sequences (62,731 frames) are randomly shuffled
for training and validation with 3:1 ratio.

B. FCAV M-Air Pedestrian (FMP) Dataset

The FMP dataset was collected from an HD camera and
a Hokuyo UTM-30LX-EW planar LiDAR mounted on a
ROS-enabled Segway mobile robot platform. The dataset‡

was collected in an outdoor environment using the “M-Air”
facility at the University of Michigan campus in Ann Arbor,
MI, USA in January 2019. A Qualisys Motion Capture
system was used to record shoulder key-points of pedestrians
for ground truth data. The FMP dataset contains four short
videos with a total recording time of 10 minutes and we used
3,934 frames with good quality ground truth. In each frame,
there are up to two pedestrians walking in the scene, in-
teracting with and sometimes occluding each other. The last
video clip (810 frames) was selected as the test set. Similar to
the CMU Panoptic Dataset, frames from the remaining three
sequences (3,124 frames) are randomly shuffled for training
and validation with 3:1 ratio.

C. Training Parameters

In the CMU Panoptic dataset, all methods were trained
with the Adam optimizer at an exponential-decay learning
rate. The initial learning rate is 0.0001, decay steps is
30, 000, and the decay factor is 0.8. We validate the models
for every 10, 000 steps, and choose the one who performs
the best on the validation set to test on the test set. The
3D AVOD method was trained for 240, 000 steps and the
2D AVOD method was trained for 140, 000 steps. In our
PPLP network, the OrientNet was trained for 300, 000 steps,
and the RPN and the PredictorNet were trained for 120, 000
steps.

When fine-tuning for the FMP dataset, the initial learning
rate is doubled for each model from their stopping point
while training on the CMU Panoptic dataset. Other training
parameters remain the same. The 3D AVOD method was
fine-tuned for 20, 000 steps, and the 2D AVOD method

‡The FMP dataset is available at https://github.com/
umautobots/FMP-dataset.
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was fine-tuned for 30, 000 steps. Due to the lack of full
pointclouds in the FMP Dataset, we are not able to generate
quaternion groundtruths for the OrientNet in occlusion sce-
narios. Thus, we fine-tuned the OrientNet with un-occluded
image crops for 7, 000 steps. The RPN and the PredictorNet
was fine-tuned for 40, 000 steps. The OrientNet was trained
for 300,000 steps with a batch size of 1.

III. ABLATION STUDY ON ORIENTNET

This section provides the results of an ablation study on
the effect of OrientNet for orientation estimation.

In our manuscript, we used three metrics to evaluate the
performance of our network, which is a set of widely used
metrics in pedestrian detection, same as the KITTI dataset
[1]: 2D Average Precision (AP), Bird’s Eye View (BEV)
AP, and BEV Average Orientation Similarity (AOS). The
2D AP and BEV AP only evaluates the location detection
performance and AOS evaluates both orientation and location
detection accuracy. To calculate BEV AP, all 3D pedestrian
anchor boxes in the Bird’s Eye View were analyzed. The
3D boxes which overlap more than 50% with the ground
truths were counted as True Positives (TP), while the missing
(undetected) boxes were counted as False Negatives (FN).
Then, the AP was calculated by the recall rate r = TP

TP+FN .
On the other hand, the BEV AOS score depends on both

orientation and location. The AOS metric [1] was defined as

AOS =
1

11

∑
r∈{0,0.1,...,1}

max
r̃:r̃≥r

s(r̃), (2)

where r is the object detection recall rate defined above. The
orientation similarity s(r) ∈ [0, 1] is a function of the recall
rate r, defined as

s(r) =
1

|D(r)|
∑

i∈D(r)

1 + cos∆
(i)
θ

2
δi, (3)

where D(r) denotes the set of all object detections at recall
rate r and ∆

(i)
θ is the difference in angle between estimated

and ground truth orientation of detection i [1]. This means
that the AOS metric cannot evaluate orientation alone. The
AOS metric depends on both the orientation performance and
the detection results (the recall rate). So far, we could not
find a widely-used, well-defined metric to evaluate how good
the orientation estimation is by itself regardless of location
detection performance.

In this supplementary file, we define a metric based on
the AOS to reflect orientation evaluation only and we named
this new metric “Pure Orientation Score (POS)”. We define
POS as

POS =
1

11

∑
r∈{0,0.1,...,1}

max
r̃:r̃≥r

p(r̃), (4)

p(r) =
1

|P (r)|
∑
i∈P (r)

1 + cos∆
(i)
θ

2
δi, (5)

where P (r) denotes the set of all True Positive detections at
recall rate r, and the rest of the notations are the same as

in AOS. The difference between POS and AOS is that POS
only calculates the score of True Positives (TP), while AOS
evaluates all detection. The POS metric essentially gives a
weight to each TP based on the orientation angle results (the
1+cos∆

(i)
θ

2 term). This way, since all TP match the location of
the ground-truth bounding boxes, the POS metric essentially
evaluates the effect of orientation alone.

TABLE I: Experimental results on the CMU Panoptic
dataset. The POS row roughly estimates the average angle
error.

Method Name AVOD Ours OrientNetheight-
density

occupancy
(proposed)

Pointclouds
(train/test)

3D/3D 3D/2D 2D/2D 2D/2D 2D/2D N/A

pedestrian 2D
detection AP

94.2 58.2 76.7 86.6 89.3 91.2

pedestrian
BEV AP

94.4 58.1 77.0 89.4 92.2 91.2

pedestrian
BEV AOS:

93.0 35.2 72.7 86.3 90.4 88.6

POS 98.5 60.5 94.4 96.5 98.0 97.1
∆(θ̄)
(degree)

±14.1◦ ±77.9◦ ±27.4◦ ±21.6◦ ±16.3◦ ±19.6◦

Then, we designed the following ablation study on the
effect of orientNet using the POS metric. First, we ran Mask
R-CNN on the CMU Panoptic dataset, and Mask R-CNN
generated pixel-level RGB masks for each detected pedes-
trian. Second, we matched the Mask R-CNN masks with
the groundtruth bounding box locations using a matching
strategy as described in the footnote∗. In the CMU dataset,
around 91.2% of the Mask R-CNN detections were obtained
as the correct matches with the groundtruth labels, and we
computed the POS score for these true positive detection
results only (assuming their location is correct). Another met-
ric, the average angle error ∆(θ̄), can also be computed from
the POS. Table I shows the extended experimental results in-
cluding POS and ∆(θ̄) evaluations across all methods and for
OrientNet alone (ablation study). As shown, the POS score
of AVOD(3D/3D) is still the highest among all POS scores,

∗Notes on the matching strategy: Suppose there are two pedestrians,
A and B, standing in the same camera image, and suppose the arm of
pedestrian A is occluding the waist of pedestrian B. In this case, Mask R-
CNN may generate one whole mask for pedestrian A but may generate two
separate masks for pedestrian B (top body and lower body). However, when
we try to match the Mask R-CNN result with the groundtruth label, which
mask of pedestrian B should be matched with pedestrian B groundtruth?
Intuitively, we want to match the mask which occupies the largest part of
pedestrian B. With the help of point cloud, for each mask, we extract the
point clouds in the mask area and then compute the number of points in
those point clouds that actually lie within the groundtruth box in BEV. Only
the groundtruth box that contains the highest number of point clouds within
is selected. As a result, the mask that occupies smaller part of pedestrian
B will have smaller number of point clouds within groundtruth box, hence,
is discarded. Under this strategy, it is guaranteed that only the Mask R-
CNN detection of pedestrian A and the largest detection of pedestrian B are
matched to correct groundtruth labels, and can be passed to the OrientNet to
test the accuracy of orientation detection. In our experiments, we observed
that such matching strategy could not match pedestrian B to any ground truth
box if pedestrian B was occluded too much or if there were not enough point
clouds extracted from the mask for algorithm to continue. In these cases,
only the Mask R-CNN detection results of pedestrian A were passed to
OrientNet for evaluation.



which confirms our observation that dense 3D LiDAR signals
can indeed provide more information about pedestrian 3D
orientations. In our task where only 2D LiDAR is available,
the POS score for OrientNet alone given camera images
is higher than the comparison methods AVOD(3D/2D) and
the AVOD(2D/2D) given 2D LiDAR data, which shows
the effectiveness of OrientNet for orientation estimation and
confirms our hypothesis that camera images can be used to
effectively estimate 3D pedestrian orientations.

IV. ABLATION STUDY ON MASK R-CNN COLOR INPUT
FOR ORIENTNET

We conducted an additional experiment to compare the
performance of using black-and-white (binary) silhouette
inputs from [2] and RGB masked inputs from Mask R-CNN.
In this experiment, we tried both the black-and-white input
and the masked RGB color input on OrientNet, and evaluated
their performances using the same metric as we defined in
(4) and (5). Table II shows the comparison results. As shown,
adding color inputs improved the POS of OrientNet by 9%,
and the average angle error has been reduced from ±39.8◦

to ±19.6◦ compared with just using the black-and-white
silhouette directly from [2].

TABLE II: Experimental results of OrientNet using different
input crops from the CMU Panoptic dataset. The POS row
roughly estimates the average angle error.

OrientNet
Input format black-and-white

silhouette (SilhoNet)
masked RGB color
(Ours)

pedestrian 2D
detection AP

91.2 91.2

pedestrian
BEV AP

91.2 91.2

pedestrian
BEV AOS:

80.7 88.6

POS 88.4 97.1
∆(θ̄)
(degree)

±39.8◦ ±19.6◦
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