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Abstract—Classifier fusion methods integrate complementary
information from multiple classifiers or detectors and can aid
remote sensing applications such as target detection and hy-
perspectral image analysis. The Choquet integral (CI), param-
eterized by fuzzy measures (FMs), has been widely used in the
literature as an effective non-linear fusion framework. Standard
supervised CI fusion algorithms often require precise ground-
truth labels for each training data point, which can be difficult
or impossible to obtain for remote sensing data. Previously, we
proposed a Multiple Instance Choquet Integral (MICI) classifier
fusion approach to address such label uncertainty, yet it can be
slow to train due to large search space for FM variables. In
this paper, we propose a new efficient learning scheme using
binary fuzzy measures (BFMs) with the MICI framework for
two-class classifier fusion given ambiguously and imprecisely
labeled training data. We present experimental results on both
synthetic data and real target detection problems and show that
the proposed MICI-BFM algorithm can effectively and efficiently
perform classifier fusion given remote sensing data with imprecise
labels.

Keywords—Choquet integral, fuzzy measure, classifier fusion,
hyperspectral, target detection

I. INTRODUCTION

Classifier fusion refers to the process of integrating infor-

mation from multiple classifier outputs. In applications such as

target detection given remote sensing data, confidence maps

from multiple detectors or classifiers are usually fused into

one decision output with the goal of improved detection or

classification accuracy [1], [2].

Previous supervised fusion methods often require precise,

pixel-level ground-truth labels for each training data point,

which can be challenging to obtain for remote sensing data

due to sensor noise, sub-pixel targets, or simply the large

quantities of data [3], [4], [5], [6]. In our experiments, for

example, we collected hyperspectral imagery (HSI) on a flight

over the University of Southern Mississippi-Gulfpark campus

and we placed a variety of cloth panel targets in the scene

[7]. The goal is to perform target detection given hyperspectral

data. We measured target coordinates using a hand-held Global

Positioning System (GPS) device during data collection, but

the GPS device used was only accurate to 2-5 meters. Figure 1

This material is based upon work supported by the National Science
Foundation under Grant IIS-1723891-CAREER: Supervised Learning for
Incomplete and Uncertain Data.
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Fig. 1: Illustration of imprecise labels of targets from a remotely
sensed hyperspectral imagery. (a) A photo of a dark green target on
a lawn. (b) An inaccurate GPS location (marked by a red triangle)
that differs from the true dark green target location (green circle) in
the scene. (c) A photo of a sub-pixel-size brown target. (d) The brown
target is occluded by tree canopy and is invisible from the imagery.
The brown dot marks the imprecise GPS location. Red rectangles in
(b)(d) mark the approximate regions that contains the targets.

shows an illustration of targets and their visual appearances in

the RGB imagery from the HSI data.

Figure 1a shows a photograph of a dark green target on a

lawn. As shown in Figure 1b, the measured GPS location of

the target (red triangle) is visibly different than where the dark

green target actually is in the scene (green circle). Figure 1c

shows a sub-pixel brown target in the scene, partially occluded

by trees. As shown in Figure 1d, the target is not visible

in the HSI data amongst nearby tree canopy. As these two

examples illustrate, it is difficult, and sometimes impossible,

for human annotators to visually inspect, locate, and label

accurate target locations in the HSI imagery to train a standard

supervised fusion algorithm for target detection, given such

remotely sensed data.

However, in this problem, annotators can easily circle the

approximate locations of the targets (such as those marked

by red rectangles in Figure 1) given the imprecise GPS

information and identify that a certain area possibly contains a

target. In this way, the tedious and expensive process of pin-

pointing exact target locations can be avoided. Instead, one

can easily obtain approximate regions or sets of pixels that

contain the targets from the imprecise GPS coordinates.

Previously, we proposed a Multiple Instance Choquet Inte-

gral (MICI) method for multi-sensor classifier fusion that can

learn from such ambiguously and imprecisely labeled training

data [8], [6]. The MICI approach is based on the Multiple

Instance Learning (MIL) framework [9] and uses the Choquet

integral (CI) [10] as the aggregation operator for fusion. The
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Choquet integral (CI) is a parametric function and can flexibly

represent various relationships between fusion sources [11],

[12], depending on the fuzzy measure (FM) it uses. In our

previous work [8], [6], we showed that the MICI with a

monotonic and normalized fuzzy measure can achieve state-

of-the-art classifier fusion and detection results, given remote

sensing data with imprecise labels.

Although effective, the previous MICI algorithms can be

slow to train. The size of the fuzzy measure that needs to

be optimized through an MICI algorithm is exponential to

the number of classifier outputs (“sources”) to be fused. We

observed in our previous experiments [8], [13], [12] that

the real-valued fuzzy measure learned by an MICI algorithm

tends to approximate {0, 1} instead of any random number

within [0, 1] for binary classification problems (such as target

versus non-target detection). This suggests that a binary fuzzy

measure (BFM) may be an efficient substitute to a regular

normalized fuzzy measure to be used with MICI for two-class

classification fusion. With such motivation, in this work, we

propose the use of binary fuzzy measures (BFMs) with MICI

to improve the efficiency while maintaining the effectiveness

of MICI to solve classifier fusion problems given remote

sensing data with imprecise labels.

II. PRELIMINARIES: FUZZY MEASURE, BINARY FUZZY

MEASURE, AND CHOQUET INTEGRAL

The Choquet integral (CI) has a long history of providing

an effective framework for non-linear information fusion [14],

[15], [16], [17], [18]. The CI is an aggregation operator

based on the fuzzy measures. Depending on the values of

each element in the fuzzy measure, the CI can represent a

variety of relationships and combinations among the fusion

sources. Therefore, a crucial aspect of using the CI for in-

formation/sensor fusion is learning the fuzzy measures for the

CI [19], [20]. This section provides description and definitions

of the fuzzy measure and the (discrete) Choquet integral and

reviews previous methods in learning the fuzzy measures,

specifically within the CI. Table I provides a comprehensive

list of notations for all symbols used in this paper. We proceed

to describe the FM and CI as follows.

A. Fuzzy Measure and Binary Fuzzy Measure

Consider the case that there are m classifiers, C =
{c1, c2, . . . , cm}, for fusion. The set of classifiers C contains

2m−1 non-empty subsets. The power set of all (crisp) subsets

of C is denoted 2C .

Definition 1. A monotonic and normalized fuzzy measure, g,

is a real valued function that maps 2C → [0, 1]. It satisfies

the following properties [10], [21], [22], [23]:

1. g(∅) = 0;

2. g(C) = 1;

3. g(A) ≤ g(B) if A ⊆ B and A,B ⊆ C.

Fuzzy measures model the relationship among the sources.

Each measure element value represents the power/“worth” of a

certain combination of the sources. In this paper, the measure

TABLE I: List of Notations

Symbol Description

Z
+ Positive integers.

m Total number of classifiers to be fused.
xn An instance (a data point).

h(ck;xn) The kth classifier output on the nth instance. In this paper,
all classifier outputs are normalized between [0, 1].

C The set of classifiers to be fused. In this paper, C is sorted
so that h(c1;xn) ≥ h(c2;xn) ≥ · · · ≥ h(cm;xn).

g A (regular) fuzzy measure of length 2m − 1.
G A binary fuzzy measure (BFM) of length 2m − 1.
Cg(xn) The Choquet integral output for instance xn.
g(Ak) The fuzzy measure element value corresponding to the subset

Ak = {c1, . . . , ck}.
k0 The sorted index for the first encounter of 1 on a path in the

lattice of BFM, k0 ∈ Z
+ and k0 ∈ [1,m].

dn Desired labels for the nth instance.
J Fitness values.
t Iteration t.
η Rate of “small-scale mutation”, where only one measure

element is sampled and updated.
U A count threshold for the number of repeated samples. u is

the counter.
Q A count threshold for the number of times the new BFM

samples do not improve over past iterations. q is the counter.
Uf Binary flag (True or False) to signal whether the search has

been exhaustive.
Gt The new BFM sampled at iteration t.
P The set of unique BFMs that have been sampled during

optimization.
J∗ Optimal fitness value.
G ∗ Optimal BFM value.

elements within a fuzzy measure are denoted with a subscript

matching its corresponding subset. For example, element g1
corresponds to subset {c1}, element g12 corresponds to subset

{c1, c2}, etc. Note that g has a total of 2m − 1 elements

and g123...m is always equal to 1 (Property 2). All other

measure elements hold real values between [0, 1] and satisfy

monotonicity (Property 3). Non-monotonic fuzzy measures

have been studied in the literature [24], [25], [26], but this

paper focuses on monotonic and normalized fuzzy measures,

following the assumption of our previous MICI work [8],

[6]. The term “(regular) fuzzy measures” in this paper always

refers to such monotonic and normalized fuzzy measures. The

word “regular” was added to differentiate with the binary fuzzy

measure that we define as follows.

Definition 2. [13], [12] A binary fuzzy measure (BFM), G ,

is a real valued function that maps 2C → {0, 1}. It satisfies

the following properties:

1. G (∅) = 0;

2. G (C) = 1;

3. G (A) ≤ G (B) if A ⊆ B and A,B ⊆ C. That is

to say, if G (B) = 0, G (A) ≡ 0. Otherwise, if G (B) = 1,

G (A) ≡ 0 or 1. Similarly, if G (A) = 1, G (B) ≡ 1. Otherwise,

if G (A) = 0, G (B) ≡ 0 or 1.

Figure 2 shows an illustration of a binary fuzzy measure for

four sources. The red arrows show one path to “climb up the

lattice” of the fuzzy measure elements. Suppose we learned

that the “first encounter of 1” on the G2 → G23 → G123 →
G1234 path (marked in red) is the G23 element. Thus, we can

automatically deduce that its subset, G2 ≡ 0 as G2 ≤ G23 and
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G1 G2 0 G3 G4

G12 G13 G14 G23 1 G24 G34

G123 1 G124 G134 G234

G1234 1

Fig. 2: An illustration for the subset and superset relationships
between (binary) fuzzy measure elements given four sources. The
red arrows describe one path for “climbing up the lattice” (the
monotonicity property). Given G23 = 1 (marked in red box), for
example, it can be deduced from BFM definition that G2 = 0 and
G123 = G1234 = 1.

G2 ∈ {0, 1} (G2 6= 1 as G23 is given as the “first encounter”

of 1 on that path). On the other hand, the elements G123

and G1234 are the supersets of G23 and will have to take the

value 1 as they can only be larger or equal to G23, according

to the monotonicity property. The values for the remaining

measure elements can be automatically deduced. This property

of BFM leads to a simpler representation and more efficient

computation, as the BFM only needs to optimize over {0, 1}2
C

versus [0, 1]2
C

for the regular fuzzy measures [12], [13].

B. Choquet Integral

Fuzzy measures are used to define fuzzy integrals such

as the Sugeno fuzzy integral (hereinafter referred to as “the

Sugeno integral”, or SI) [21] and the Choquet fuzzy integral

(hereinafter referred to as “the Choquet integral”, or CI) [10],

[27] in the literature. There have been studies on the statistical

properties of the Choquet and Sugeno Integrals [28], [29],

[30] and we focus on the Choquet integral in this paper as it

has shown better classification performance than the Sugeno

integral in some applications in the literature [31], [32]. In

fact, it has been proven in [13] that the CI and SI are equal

for a BFM. The Choquet integral (CI) is a natural extension of

the Lebesgue integral [33], [34] and has long been used as an

effective aggregation operator for sensor fusion [23]. In this

paper, we use the discrete Choquet integral to fuse discrete

number of classifier outputs.

Definition 3. The discrete Choquet integral on an instance

xn given classifiers C with respect to a fuzzy measure g is

computed as [23], [34], [8]:

Cg(xn) =
m
∑

k=1

[h(ck;xn)− h(ck+1;xn)] g(Ak), (1)

where C is sorted so that h(c1;xn) ≥ h(c2;xn) ≥ · · · ≥
h(cm;xn). Since there are only m sources, h(cm+1;xn) := 0.

The fuzzy measure element value corresponding to the subset

Ak = {c1, . . . , ck} is g(Ak).

To compute the CI of a BFM, one simply substitutes

g with BFM G in (1). It has been proved in [12] that

the Choquet integral on an instance xn given classifiers C

with respect to a binary fuzzy measure G is equal to the

kth0 classifier output h(ck0
;xn), where C is sorted so that

h(c1;xn) ≥ h(c2;xn) ≥ · · · ≥ h(cm;xn), h(cm+1;xn) := 0,

g(Ak) is the fuzzy measure element value corresponding to the

subset Ak = {c1, . . . , ck} and k0 is the (sorted) index such

that g(Ai) = 0 ∀i < k0 and g(Aj) = 1 ∀j ≥ k0. This way,

the computation of CI with regard to a BFM is reduced to

simply determining k0 and is much more efficient to compute

and store.

C. Learning The Fuzzy Measure

A crucial aspect of using the CI to perform fusion is to learn

all the element values of the fuzzy measure g from training

data of this form [8]. In this subsection, we briefly review

the least-square-based approaches and evolutionary-algorithm-

based approaches for learning a fuzzy measure in the literature.

1) Least-square based approaches: As introduced in Sec-

tion II-A, for m input sources, there are 2m − 1 non-empty

subsets and hence 2m− 1 fuzzy measure elements. Excluding

g123...m ≡ 1, there are 2m − 2 unknown fuzzy measure

element values to be estimated. A quadratic programming (QP)

approach to solve for the fuzzy measures based on the least-

square criteria was discussed in [35], [34]. Given the discrete

CI formula in equation (1) and assuming the desired labels

for the nth data point/instance xn is dn, the goal of the the

least-square criteria is to find the fuzzy measure g so that

the squared error is minimized between the Choquet integral

outputs of all training data points given g and their desired

labels dn [35], [34]:

min
g

E2 =

N
∑

n=1

(Cg(xn)− dn)
2
. (2)

It has been shown in [34], [36] that the above least square

criteria can be formulated into a quadratic programming

(QP) problem given monotonicity constraints. The quadratic

programming approach can then be solved by a QP solver such

as the MATLAB built-in quadprog() function. This method is

called the “CI-QP” method and will be used as a baseline

comparison method later in our experiments. Note that for the

CI-QP method, precise pixel-level label dn is required and

assumed to be available for all n data points.

2) Evolutionary Algorithms: The evolutionary algorithm

(EA) has been used in the literature to determine fuzzy mea-

sure values [37], [38], [39], [40], [41], [42], [43], [44], [45],

[19], [8], [6], [46]. The EA algorithm usually considers the

fuzzy measure as a chromosome and generates a population

of potential measures. A fitness function is predefined to model

and evaluate the measure. An example of the fitness function

is a function that calculates misclassification rate or the least-

squared error between the CI output and the actual class label,

such as in (2). Measures are then selected from the measure

population based on their fitness values. “Parent” measure

element values from the last iteration are updated by mutation

based on their fitness values and a “child” measure population

is generated. This process continues until a stopping criterion

is met (for example, maximum number of iterations or the

misclassification rate is below a threshold). The measure that
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gives the best fitness value is returned as the optimal fuzzy

measure solution.

Other methods, such as the gradient descent algorithm

[17], Particle Swarm Optimization (PSO) [47], [48], [49], and

neuron models and neural networks [50], [51], [52], have also

been used in the literature to solve for fuzzy measures based

on Choquet integrals.

III. MULTIPLE INSTANCE CHOQUET INTEGRAL WITH

BINARY FUZZY MEASURES

The binary fuzzy measure has been explored previously in

[13], [12], [53]. However, these work mainly use hand-crafted,

synthetic datasets only and cannot handle imprecise labels as

commonly observed in remote sensing data. To our knowledge,

no prior experiments on binary fuzzy measure have been

conducted on real remote sensing applications considering

imprecise labels. To address this challenge, we apply the

binary fuzzy measure with the recently proposed, state-of-the-

art Multiple Instance Choquet Integral (MICI) algorithm [8],

[6] for classifier fusion applications in remote sensing. We

use real-world hyperspectral data in our following experiments

and demonstrate the effectiveness of the Choquet integral with

binary fuzzy measure. We also propose a novel sampling-

based optimization method for learning the optimal BFM in

our applications.

A. The MICI-BFM Algorithm: Objective Function

The MICI classifier fusion algorithm was proposed to

address the label uncertainty problem commonly observed

in remote sensing applications. As motivated in Section I,

standard supervised Choquet integral fusion methods require

accurate pixel-level training labels, which are often difficult

or impossible to obtain in remote sensing applications, due

to factors such as sensor noise, measurement inaccuracy, co-

registration error, and the presence of sub-pixel and occluded

targets in the scene. We previously proposed a MICI min-

max approach [6] that can perform CI fusion with such label

imprecision, and we observed that the learned fuzzy measure

value of the CI tend to approximate binary values for two-class

classifier fusion problems. Thus, we propose to use BFM with

the MICI algorithm for more accurate classification results and

more efficient computation.

The MICI model formulates the classifier fusion problem

under the Multiple Instance Learning (MIL) framework [9] to

address label uncertainty. It is assumed that labels are provided

for a set (or, a bag) of data points, but pixel-level labels are not

available or imprecise in training data. The MIL framework

assumes that all the instances (pixels or data points) in a

negative bag are negative (label “0”), and at least one instance

in each positive bag should be positive (label “1”). The binary

fuzzy measure G is used in the MICI-BFM algorithm for the

CI fusion. The objective function of the MICI-BFM algorithm

is written as

J =
B−

∑

a=1

max
∀x

−

ai
∈B

−

a

(

CG (x
−

ai)− 0
)2

+
B+

∑

b=1

min
∀x

+

bj
∈B

+

b

(

CG (x
+

bj)− 1
)2

,

(3)

where B+ is the total number of positive bags, B− is the

total number of negative bags, x−

ai is the ith instance in the ath

negative bag and x+

bj is the jth instance in the bth positive bag,

CG is the Choquet integral output given binary fuzzy measure

G computed using (1), B−
a is the ath negative bag, and B

+

b is

the bth positive bag. By minimizing the objective function in

(3), we encourage the CI value of all instances in the negative

bags to be 0 (the max term) and encourage the CI value of at

least one instance in the positive bags to be 1 (the min term),

which satisfies the MIL assumption. Compared with standard

MICI models, the BFM G is used to here restrict the search

space of the fuzzy measure to binary for CI fusion.

B. The MICI-BFM Algorithm: Measure Optimization

As discussed in [13], the binary fuzzy measure only needs

to optimize the space of {0, 1}2
C

rather than [0, 1]2
C

, which

is significantly more efficient especially when the size of C
is large. Previously, when using regular fuzzy measures, the

measure length is exponential to the number of sources m
(g is of length 2m − 1). For binary fuzzy measures, the

number of fuzzy measure elements to be optimized is no

longer exponential, but is linear (O(m)) [12]. Since BFM only

consists of binary measure values, the search space is finite and

the learning process is deterministic and can always converge

if all possible combination of fuzzy measure elements are

surveyed.

In this paper, we propose a novel optimization scheme

inspired by the evolutionary algorithm to learn BFMs within

the MICI-BFM framework. The pseudo-code for the proposed

optimization scheme for both training and testing stages can

be seen in Algorithm 1. We break down the algorithms by

line numbers and describe each part in detail.1 First, a BFM

is randomly generated and used as an initial measure G0, and

its fitness value J0 is computed (A1L1). We set the current

optimal measure and fitness to G0 and J0, respectively. We

maintain a set of unique BFMs that has been surveyed, P ,

and we add G0 as the first element P0 (A1L2). The collection

P = {P0, P1, ...} can be viewed as a “look-up table” that

contains all unique BFMs that have been searched in previous

iterations. The variable Uf is a binary logical flag to indicate

the search has been deemed exhaustive (True) or not yet

(False).

Then, at iteration t, we sample a new BFM to add to P ,

following Algorithm 2. A new BFM is sampled by either

changing one measure element value in the existing BFM

1In the brackets, the number after “A” indicates which algorithm (1 or 2)
and “L” indicates the line number in the corresponding algorithm.
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Algorithm 1 The optimization scheme of MICI-BFM

TRAINING

Require: Training Data, Training Labels, Parameters
1: Initialize a BFM G0. Compute fitness J0 using (3).
2: J∗ ← J0; t, p, q ← 0; Uf ← False; P0 ← G0. G ∗ ← G0.
3: while True do

4: t← t+ 1.
5: Gt ← Sample a new BFM based on Gt−1 using Algorithm 2 .
6: u← 0.
7: while Gt ∈ P do

8: Gt ← Sample a new BFM based on Gt according to Algorithm 2.
9: u← u+ 1.

10: if u > U then break; Uf ← True;
11: end if

12: end while

13: if Uf then break;
14: else

15: p← p+ 1.
16: Pp ← Gt.
17: Evaluate fitness Jt of Gt using (3).
18: if Jt > J∗ then

19: J∗ ← Jt, G ∗ ← Gt.
20: else

21: q ← q + 1.
22: end if

23: if q > Q then break;
24: end if

25: end if

26: end while

return G ∗

TESTING

Require: Testing Data, G ∗

27: TestLabels← Choquet integral output computed based on Equation (1)
using the learned G ∗ above.

return TestLabels

(A2L2-4) or simply generating a brand-new BFM (A2L5-7),

which is parallel to the “small-scale mutation” and “large-scale

mutation” steps in the evolutionary algorithm for sampling

regular FMs in our previous work [8]. For a rate of small-

scale mutation η, a new BFM is generated by updating only

one measure element. we first evaluate the “valid intervals”

of BFM Gt−1 (A2L3). The term “valid interval” defines how

much “wiggle room” a measure element can change values

without sacrificing monotonicity. Previously, when using reg-

ular FMs, the valid interval is defined as the difference between

the lower and upper bound for each measure element [8]. The

lower and upper bounds of a measure element were computed

as the largest value of its subsets and the smallest value of its

supersets, respectively. In this paper, when using BFMs, there

are only three options for the “valid interval” for each measure

element. If both the upper and lower bounds of a measure

element have the value 1, the measure element has no other

option but to hold the value 1. If both the upper and lower

bounds of a measure element have the value 0, the measure

element has no other option but to hold the value 0. If the

upper bound of a measure element has value 1 and the lower

bound of a measure element has value 0, the measure element

value can then choose from either 0 or 1. As an example, the

G2 in Figure 2 has a valid interval of 1 but G123 has a valid

interval of 0.

After evaluating the valid intervals, one measure element is

Algorithm 2 Sampling a new BFM

Require: a BFM G , rate of small-scale mutation η
1: Randomly generate z ∈ [0, 1].
2: if z < η then

3: Evaluate valid intervals of G .
4: G ′ ← Sample a measure element in G based on the valid intervals

and update value.
5: else

6: G ′ ← Randomly generate a new BFM.
7: end if

return Updated measure G ′

selected in Gt−1 by sampling from a multinomial distribution

based on the valid intervals of all measure elements (A2L4).

For BFM, the valid interval can only take values of 1 or 0, thus,

this sampling process is equivalent to uniformly sampling from

measure elements that can change values (you may think of

them as the independent variables in [12]). Then, this measure

element value is updated (from 0 to 1 or from 1 to 0) to form a

new BFM. On the other hand, for a rate of large-scale mutation

1 − η, a brand-new BFM is sampled randomly (A2L6). We

set η = 0.5 in our experiments to balance between quickly

updating a measure element with valid intervals and searching

for new BFMs to avoid local minima.

After sampling such a new measure (A1L5), we perform a

check to see if this updated BFM already exists in P (A1L7-

12). If we already searched this new BFM, we re-sample

another BFM using Algorithm 2 again. This sampling process

is repeated until a new BFM is generated that has not been

previously searched in P . Then, the fitness of this new measure

is computed. If the fitness is greater than the best fitness J∗ so

far, the best BFM G ∗ is updated (A1L15-19). If a new BFM

cannot be found after repeatedly sampling new measures more

than U times (A1L10), or if the fitness remains not updated

after Q times (A1L23), the algorithm assumes that the search

has exhausted all possible BFMs and automatically stops. In

our experiments, we set U = 500 and Q = 100 to ensure that

possible BFM combinations can be sufficiently explored and

yet the algorithm does not waste time if no possible BFMs

are left to be sampled. The best BFM G ∗ is then returned at

the end of training and used in the testing stage to compute

CI fusion results for testing data.

IV. EXPERIMENTAL RESULTS OF MICI-BFM ON TARGET

DETECTION GIVEN REMOTE SENSING DATA

The proposed MICI-BFM was tested on a real target de-

tection application using the MUUFL Gulfport hyperspectral

data set. The MUUFL Gulfport hyperspectral data set [7] was

collected over the University of Southern Mississippi-Gulf

Park Campus in Long Beach, MS, USA in November 2010

and contains three hyperspectral data cubes collected on three

separate flights at an altitude of 3500’ over the campus area.

The HSI data cubes have a ground sample distance of 1m.2

The image size for the three flights are 325× 337, 329× 345,

2The data set is available at [54]. The three flights used in
this experiment corresponds to “muufl_gulfport_campus_w_lidar_1.mat”,
“muufl_gulfport_campus_3.mat”, and “muufl_gulfport_campus_4.mat”.
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Fig. 3: The left column shows the RGB image from MUUFL Gulfport
data set with ground truth target locations. Brown circle marks the
true brown target locations, yellow diamond marks the true dark green
target locations, cyan asterisk marks the true faux vineyard green
(FVG) target locations, green square marks the true pea green target
locations. The bottom right black area are invalid regions and are
excluded in our experiments. The right column shows two sample
photographs of the setup of cloth panel targets in the scene.

and 333×345 pixels, respectively. All HSI data cubes contain

72 bands corresponding to wavelengths 367.7nm to 1043.4nm

and were collected using the CASI hyperspectral camera [7].

In this experiment, the first four and last four bands were

removed due to noise.

Figure 3 shows the RGB images over the scene and the

“ground truth” locations for four types of cloth panel targets:

brown (15), dark green (15), faux vineyard green (12), and pea

green (15). The ground truth locations were determined by a

Trimble Juno SB hand-held GPS (Global Positioning System)

device and were only accurate up to several pixels. Thus, the

MICI approach is needed to account for such imprecision and

uncertainty during fusion. In this experiment, we generated

detection maps for each of the four individual target types

using the adaptive coherence estimator (ACE) detector [55],

[56], [57] based on known target spectral signatures. The goal

of this experiment is to detect all targets in the scene by fusing

results from the four individual target detectors using the MICI

classifier fusion approach. We use similar experimental set-up

as in [6] and perform flight-based cross validation, i.e., training

on flight 1 and testing on flight 3 and flight 4, and so on. In

our previous work, we presented fusion results of MICI min-

max model using regular FMs and showed that it achieves

state-of-the-art detection results (see Table IV in [6]). In this

work, we compare our newly proposed MICI-BFM algorithm

to our previous MICI results with regular FMs and show

the effectiveness and efficiency of using BFMs in the MICI

framework for fusion. In addition, we compare our proposed

MICI-BFM method to the CI-QP method as discussed in

Section II-C1. The CI-QP approach requires accurate pixel-

level labels for every training data point and, thus, cannot

handle imprecise labels as does the MICI method. In our

implementation of the CI-QP in this problem, all points in

a positive bag were labeled “1” and all points in a negative

bag were labeled “0”. We implemented two versions of the CI-
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Fig. 4: A visual example of the ROC curve results, train on flight 3
data and test on flight 1 data.

QP method, “CI-QP FM” using regular fuzzy measures and

“CI-QP BFM” enforcing binary FMs.

We evaluated the target detection results using the receiver

operating characteristic (ROC) curve. Figure 4 shows a visual

ROC curve example for train on flight 3 and test on flight

1. The remaining cross validation experiments yield similar

ROC curve results. The X-axis of the ROC curves represents

the False Alarm Rate (FAR) up to 1×10−3/m2 (corresponding

to a reasonable scale of 1 false alarm in 1000m2) and the Y-

axis represents Positive Detection (PD). As shown from the

plot, the two MICI methods yield top-performing ROC curves

than comparison methods and MICI-BFM algorithm has slight

improvement over MICI-FM especially at low FAR.

Table II shows quantitative results of the area under curve

(AUC) statistics across all fusion methods. The higher the

AUC, the better the detection results. The top four rows in

Table II show the ACE detector results for the four individual

target types. The bottom four rows show comparison fusion

detection results between two CI-QP methods, the MICI

method using regular FMs, and our proposed MICI-BFM

algorithm. Table III reports the computation time comparison

between the two MICI methods.

We obtain the following observations from the experimental

results. First, we see from Table II that all fusion methods

(the bottom four rows) outperform individual target detection

results (the top four rows) in general, which shows the

effectiveness and necessity of fusion. Second, the two MICI

approaches outperform the two CI-QP methods regardless

of regular or binary FMs, which shows that it is useful

to incorporate label uncertainty and the MICI methods can

perform effective fusion on remote sensing data with imprecise

ground truth labels under the MIL framework. Third, the

MICI fusion models are the two top-performing methods, with

similar detection results using the regular and binary fuzzy

measures. The proposed MICI-BFM algorithm did outperform

slightly in half of the experiments. The measure values learned

by the binary fuzzy measure method are all “1”s, which is as

expected since the desired fusion output is the combination

of all individual target types. The measure values learned
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TABLE II: The AUC results of the MUUFL Gulfport target detection experiment. The standard deviation across five runs is in parentheses.
The higher the AUC, the better the detection performance. The best and second best results are marked in bold and underline, respectively.

Methods Train1Test3 Train1Test4 Train3Test1 Train3Test4 Train4Test1 Train4Test3

Brown 0.262 0.263 0.334 0.267 0.308 0.265
Dark Green 0.260 0.260 0.328 0.257 0.297 0.267

FVG 0.118 0.116 0.122 0.107 0.135 0.102
Pea Green 0.000 0.000 0.107 0.000 0.100 0.091
CI-QP FM 0.320 0.325 0.421 0.307 0.261 0.279

CI-QP BFM 0.345 0.339 0.364 0.296 0.255 0.247
MICI-FM 0.348(0.000) 0.347(0.003) 0.465(0.005) 0.339(0.001) 0.345(0.001) 0.328(0.001)

MICI-BFM 0.348 0.348 0.460 0.340 0.344 0.326

TABLE III: Running time in seconds (s) on the MUUFL Gulfport data target detection experiments. Experiments were conducted in
MATLAB using a desktop computer with Intel i7 CPU 3.60 GHz processor. The running times are provided for relative comparisons only.
The standard deviation of running time across five runs is noted in parentheses. The better result (less computation time) is marked in bold.

Methods Train1Test3 Train1Test4 Train3Test1 Train3Test4 Train4Test1 Train4Test3 Overall Mean Run Time (s)

MICI-FM 23.9(20.3) 31.3(28.3) 16.9(9.1) 14.0(10.0) 18.1(11.6) 28.6(21.9) 22.1
MICI-BFM 0.2(0.0) 0.2(0.1) 0.2(0.0) 0.3(0.1) 0.2(0.0) 0.3(0.1) 0.2

TABLE IV: RMSE and running time results on the synthetic data experiment varying number of sources m, with true binary measures.
Experiments were conducted in MATLAB using a desktop computer with Intel i7 CPU 3.60 GHz processor. The running times are provided
for relative comparisons only. The standard deviation across five runs is noted in parentheses.

Metric Method
m

3 4 5 6 7 8 9 10

Measure RMSE
MICI-FM 0.002(0.001) 0.021(0.010) 0.183(0.069) 0.080(0.021) 0.090(0.020) 0.273(0.372) 0.202(0.052) 0.213(0.034)

MICI-BFM 0 0 0 0 0 0.060(0.036) 0.038(0.034) 0.088(0.025)

Fusion RMSE
MICI-FM 0.001(0.001) 0.009(0.006) 0.047(0.010) 0.039(0.010) 0.054(0.011) 0.109(0.115) 0.059(0.015) 0.063(0.013)

MICI-BFM 0 0 0 0 0 0.032(0.023) 0.013(0.013) 0.026(0.008)

Run Time (s)
MICI-FM 101.6(122.3) 37.2(24.5) 70.9(68.4) 38.0(23.7) 78.7(44.3) 125.2(135.3) 244.0(129.6) 286.1(321.3)

MICI-BFM 0.1(0.0) 0.1(0.0) 0.2(0.2) 0.3(0.1) 0.9(0.2) 1.2(0.2) 2.0(0.5) 4.0(1.4)

TABLE V: RMSE and running time results on the synthetic data experiment varying number of sources m, with true non-binary measures.
Experiments were conducted in MATLAB using a desktop computer with Intel i7 CPU 3.60 GHz processor. The running times are provided
for relative comparisons only. The standard deviation across five runs is noted in parentheses.

Metric Method
m

3 4 5 6 7 8 9 10

Measure RMSE
MICI-FM 0.045(0.015) 0.070(0.014) 0.107(0.026) 0.119(0.035) 0.070(0.021) 0.171(0.015) 0.098(0.024) 0.058(0.010)

MICI-BFM 0.349(0.134) 0.271(0.013) 0.470(0.106) 0.262(0.098) 0.151(0.012) 0.305(0.310) 0.173(0.058) 0.261(0.383)

Fusion RMSE
MICI-FM 0.015(0.005) 0.039(0.010) 0.051(0.012) 0.038(0.012) 0.036(0.013) 0.068(0.007) 0.053(0.012) 0.043(0.011)

MICI-BFM 0.116(0.043) 0.129(0.005) 0.172(0.035) 0.087(0.023) 0.092(0.012) 0.122(0.091) 0.078(0.017) 0.176(0.232)

Run Time (s)
MICI-FM 23.9(9.0) 28.0(22.6) 27.7(9.1) 37.5(15.5) 32.1(24.3) 59.5(40.2) 183.2(110.9) 217.6(243.3)

MICI-BFM 0.2(0.0) 0.4(0.1) 0.3(0.1) 0.3(0.1) 0.6(0.1) 0.8(0.2) 2.3(0.2) 2.7(0.9)

by regular fuzzy measure are close to 1 but not exactly

(approximately 0.99) due to the sampling process, which

caused the slight performance deterioration. We also observed

from Table III that the proposed MICI-BFM was able to

converge in approximately 0.2 seconds, which was more than

a hundred times faster than the previous MICI method using

regular FMs. This is due to the fact that previous MICI-

FM method samples a population of measure elements from

[0, 1]2
C

, while the MICI-BFM only needs to evaluate a limited

amount of possible binary fuzzy measures.

V. FURTHER ANALYSIS AND DISCUSSIONS OF BFM

VERSUS FM WITH VARYING NUMBER OF CLASSIFIERS

We conducted an additional set of experiments to further

demonstrate the performance of MICI-FM and MICI-BFM

when the number of classifier fusion sources vary. For m
between 3 and 10, a random FM or BFM is generated as

the “true measure”. We randomly generated instances (with

dimension m) with values between [0, 1] and we compute

their ground-truth CI output based on the true measures. If

the CI output of an instance is larger than 0.5, the instance

is classified as a positive instance and otherwise a negative

instance. We keep generating such instances until a dataset

is constructed with 100 bags with 20 instances in each bag.

Half of the bags are labeled negative (only contains negative

instances) and half of the bags are positive (contains one

positive instance). We limit the number of positive instances

in a bag to one to avoid possible influence of bag structure

on the performance of fusion. The MICI-FM and MICI-BFM

algorithms are applied on such dataset with the constructed

bags and bag-level labels, and we compare the Root Mean

Square Error (RMSE) between the estimated FM/BFMs with

the true measures (measure RMSE), as well as the final

fusion results compared with the ground-truth CI outputs of

all instances (fusion RMSE). The lower the RMSE values,

the better the performance. We also report the running time
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for all experiments. The RMSE and running time results are

reported in Table IV when the given ground-truth measure is

binary, and in Table V when the given ground-truth measure

is non-binary.

As shown in Table IV, when the underlying true measure is

binary, the MICI-BFM outperforms the MICI-FM algorithm

in all cases tested. The MICI-BFM can learn exactly the true

binary measure in most cases since it surveys as many BFMs

combinations as possible. Our results in Table II for the real

remote sensing fusion experiment also confirms this point.

When m increases, the length of BFM increases and it may

take more iterations to search all possible measures depending

on initialization, but it will usually converge to an optimal

BFM that is close to the ground-truth, resulting in very small

measure and fusion RMSE results. If we increase U and Q
parameters so to allow more iterations to search for possible

measures, the optimization process could learn a guaranteed

optimal BFM, but the search time may be longer. Future

work will include developing new optimization schemes to

more intelligent and rapid search for BFM solutions given the

monotonicity constraint.

When the true measure is non-binary, as shown in Table V,

the MICI-FM algorithm outperforms MICI-BFM, simply be-

cause the MICI-BFM enforces the learned measure to be

binary which is not true. The measure learned by the MICI-

FM algorithm is usually very close to the true measure. It is

also worth noting that the MICI-BFM can still converge to an

optimal BFM that can achieve the best possible fitness value

for a BFM and the fusion label RMSE is still quite small. For

both cases, the MICI-BFM is much faster than the MICI-FM

algorithm.

Both results from Sections IV and V suggest that the MICI-

BFM algorithm may be used as an efficient alternative to learn

the true BFM, especially when the underlying true measure is

a BFM. Often, when the true underlying measure is unknown

in real applications, the proposed MICI-BFM algorithm can

provide an efficient method for a good initial estimation of

the relationship among fusion sources.

VI. CONCLUSION

This paper proposes the use of binary fuzzy measures with

the Multiple Instance Choquet Integral framework for remote

sensing classifier fusion with imprecise labels. The paper

provides real-world applications and experimental results of

MICI-BFM for target detection problems given remote sensing

data and shows that our proposed BFM-MICI approach can

perform accurate classifier fusion with much more efficient

computation compared with previous methods.

Future work will include applying the BFMs to alternative

types of integrals besides the CI, such as the Sugeno integral,

for multiple instance fusion problems. Future work will also

include investigating generalized fuzzy measures such as the

bi-capacity fuzzy measures (where the fuzzy measure maps

to [−1, 1]) and bipolar fuzzy measures [58]. Using BFMs for

multi-resolution and multi-modal fusion problems such as [46]

can also be investigated.
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