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BiTraP: Bi-directional Pedestrian Trajectory
Prediction with Multi-modal Goal Estimation

Yu Yao1, Ella Atkins2, Matthew Johnson-Roberson3, Ram Vasudevan4, and Xiaoxiao Du3

Abstract—Pedestrian trajectory prediction is an essential task
in robotic applications such as autonomous driving and robot
navigation. State-of-the-art trajectory predictors use a condi-
tional variational autoencoder (CVAE) with recurrent neural
networks (RNNs) to encode observed trajectories and decode
multi-modal future trajectories. This process can suffer from
accumulated errors over long prediction horizons (≥ 2 seconds).
This paper presents BiTraP, a goal-conditioned bi-directional
multi-modal trajectory prediction method based on the CVAE.
BiTraP estimates the goal (end-point) of trajectories and in-
troduces a novel bi-directional decoder to improve longer-term
trajectory prediction accuracy. Extensive experiments show that
BiTraP generalizes to both first-person view (FPV) and bird’s-
eye view (BEV) scenarios and outperforms state-of-the-art results
by ∼ 10 − 50%. We also show that different choices of non-
parametric versus parametric target models in the CVAE directly
influence the predicted multi-modal trajectory distributions.
These results provide guidance on trajectory predictor design for
robotic applications such as collision avoidance and navigation
systems. Our code is available at: https://github.com/umautobots/
bidireaction-trajectory-prediction.

Index Terms—Computer Vision for Automation, Human and
Humanoid Motion Analysis and Synthesis, Deep Learning Meth-
ods, Multi-modal Trajectory Prediction, Goal-conditioned Pre-
diction

I. INTRODUCTION

UNDERSTANDING and predicting pedestrian movement
behaviors is crucial for autonomous systems to safely

navigate interactive environments. By correctly forecasting
pedestrian trajectories, a robot can plan safe and socially-aware
paths in traffic [1], [2], [3], [4] and produce alarms about
anomalous motions (e.g., crashes or near collisions) [5], [6],
[7], [8], [9]. Early work often assumed a deterministic future,
where only one trajectory is predicted for each person given
past observations [10], [11], [12]. However, pedestrians move
with a high degree of stochasticity so multiple plausible and
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distinct future behaviors can exist [13], [14]. Recent studies
[15], [16], [17], [18], [19], [20] have shown predicting a
distribution of multiple potential future trajectories (i.e., multi-
modal prediction) rather than a single best trajectory can more
accurately model future motions of pedestrians.

Recurrent neural networks (RNNs), notably long short-term
memory networks (LSTMs) and gated recurrent units (GRUs),
have demonstrated success in trajectory prediction [2], [21],
[22], [23]. However, existing models recurrently predict future
trajectories based on previous output thus their performance
tends to deteriorate rapidly over time (> 560 ms) [14],
[24]. We propose to address this problem with a novel goal-
conditioned bi-directional trajectory predictor, named BiTraP.
BiTraP first estimates future goals (end-points of the future
trajectories) of pedestrians and then predicts trajectories by
combining forward passing from current position and back-
ward passing from estimated goals. Predicting goals can
improve long-term trajectory predictions, as pedestrians in
real world often have desired goals and plan paths to reach
these goals [25]. Compared to existing goal-conditioned meth-
ods [25], [26], [27] where goals were used as an input to
a forward decoder, BiTraP takes goals as starting positions
of a backward decoder and predicts future trajectories from
two directions, thus mitigating accumulated error over longer
prediction horizons.

Recently, generative models such as the generative ad-
versarial network (GAN) [13] and conditional variational
autoencoder (CVAE) [28], [16], were developed to predict
multi-modal distributions of future trajectories. Our BiTraP
model predicts multi-modal trajectories based on CVAE which
learns target future trajectory distributions conditioned on the
observed past trajectories through a stochastic latent variable.
The two most common forms of the latent variable follow
either a Gaussian distribution or a categorical distribution, re-
sulting in either a non-parametric target distribution [16], [25]
or a parametric target distribution model such as a Gaussian
Mixture Model (GMM) [19], [20]. There has been limited
research on how latent variable distributions impact predicted
multi-modal trajectories. To fill this gap, we conducted ex-
tensive comparison studies using two variations of our Bi-
TraP method: a non-parametric model using Gaussian latent
variables (BiTraP-NP) and a GMM model using categorical
latent variables (BiTraP-GMM). We implemented two types of
loss functions, best-of-many (BoM) L2 loss [29] and negative
log-likelihood (NLL) loss [20] to evaluate different predicted
trajectory behaviors (e.g., spread and diversity). We show that
latent variable distribution choices are closely related to the
diversity of predicted distributions, which provides guidance
for selecting trajectory predictors for robot navigation and
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collision avoidance systems.
The contributions of this work are summarized as follows.

First, we developed a novel bi-directional trajectory predictor,
BiTraP, with a multi-modal goal estimation module and a
bi-directional decoder network, and show it offers significant
improvements on trajectory prediction performance especially
for longer (≥ 2 seconds) prediction horizons. Second, we stud-
ied parametric versus non-parametric target modeling methods
by presenting two variations of our model, BiTraP-NP and
BiTraP-GMM, and compare their influence on the diversity of
predicted distribution. Extensive experiments with both first
person and bird’s eye view datasets show the effectiveness of
BiTraP models in different domains.

II. RELATED WORK

Our BiTraP model consists of two parts: a multi-modal
goal estimator and a goal-conditioned bi-directional trajectory
predictor. This section describes related work in multi-modal
trajectory prediction and goal-conditioned prediction.

CVAE-based Approaches for Multi-modal Trajectory Pre-
diction. Probabilistic approaches, particularly conditional
variational autoencoder (CVAE) based models, have been de-
veloped for multi-modal trajectory prediction. Different from
GANs [13], [30], CVAEs can explicitly learn the form of a
target distribution conditioned on past observations by learning
the latent distribution from which it samples. Some CVAE
methods assume the target trajectory follows a non-parametric
(NP) distribution and produces multi-modal predictions by
sampling from a Gaussian latent space. Lee et al. [16]
first used CVAE for multi-modal trajectory prediction by
incorporating Gaussian latent space sampling to an long short-
term memory encoder-decoder (LSTM-ED) model. However,
reference [16] samples from a zero-mean-unit-variance Gaus-
sian distribution during inference, which does not describe
input-target correlation. CVAE with LSTM components has
since been used in many applications [31], [32], [33]. Other
CVAE-based methods assume parametric trajectory distribu-
tions. Ivanovic et al. [19] assumed the target trajectory follows
a Gaussian Mixture Model (GMM) and designed a Trajectron
network to predict GMM parameters using a spatio-temporal
graph. Trajectron++ [20] extended Trajectron to account for
dynamics and heterogeneous input data. Our work extends
existing CVAE models with goal estimation and develops a
novel bi-directional decoder network to mitigate long-term
accumulated errors. Our work also provides novel insights
in comparisons between CVAE target distributions (NP and
GMM).

Trajectory Conditioned on Goals. Incorporating goals has
been shown to improve trajectory prediction. Rehder et al. [26]
and Huang et al. [34] proposed a particle-filter based method
to estimate a goal as a prior for trajectory prediction. The
predicted goal was used in [34] to create nominal trajectories,
and the trajectory offset at each way point was predicted with a
single-directional LSTM. Xue et al. [35] used a bi-directional
LSTM encoder to classify observed pedestrian trajectories
as several goal regions, and then predicted trajectory with a
single-directional LSTM. Wu et al. [36] proposed a similar

idea with neighbor features incorporated. Rhinehart et al. [27]
estimated multi-modal semantic action as goals and planned
conditioned trajectories using imitative models. Deo et al. [37]
used IRL to estimate goal states and fused results with past tra-
jectory encodings to generate predictions. We drew inspiration
from [38], which computed forward and backward rewards
based on current position and goal; the path was planned
using Inverse Reinforcement Learning (IRL). Our method is
distinct due to its novel bi-directional decoding and integration
combined with a CVAE to achieve multi-modal prediction.
Most recently, Mangalam et al. [25] designed a PECNet which
showed state-of-the-art results on BEV trajectory prediction
datasets. However, PECNet only concatenated past trajectory
encodings and end-point encodings, which we believe did not
fully take advantage of goal information. We have designed
a bi-directional trajectory decoder in which current trajectory
information is passed forward to the end-points (goals) and
goals are recurrently propagated back to the current position.
Experiment results show that our goal estimation can help
generate more accurate trajectories.

III. BITRAP: BI-DIRECTIONAL TRAJECTORY PREDICTION
WITH GOAL ESTIMATION

Our BiTraP model performs goal-conditioned multi-
modal bi-directional trajectory prediction in either first-
person view (FPV) or bird’s eye view (BEV). Let Xt =
[Xt−τ+1, Xt−τ+2, ..., Xt] denote observed past trajectory at
time t, where Xt is bounding box location and size (x, y, w, h)
in pixels for FPV [22], [23] and (x, y) position in meters for
BEV [20]. Given Xt, we first estimate goal Gt of the person
then predict future trajectory Yt = [Yt+1, Yt+2, ..., Yt+δ],
where τ and δ are observation and prediction horizons, respec-
tively. Define goal Gt = Yt+δ as the future trajectory endpoint,
which is given in training and unknown in testing. We adopt a
CVAE model to realize multi-modal goal and trajectory predic-
tion. BiTraP contains four sub-modules: conditional prior net-
work pθ(Z|Xt) to model latent variable Z from observations,
recognition network qφ(Z|Xt,Yt) to capture dependencies
between Z and Yt, goal generation network pω(Gt|Xt, Z),
and trajectory generation network pψ(Yt|Xt, Gt, Z) where φ,
θ, ω and ψ represent network parameters. Either parametric
or non-parametric models can be used to design networks pψ
and pω for CVAE. Non-parametric models do not assume
the distribution format of target Yt but learn it implicitly
by learning the distribution of Z. Parametric models assume
a known distribution format for Yt and predict distribution
parameters. We design non-parametric and parametric models
in Sections III-A and III-B, and explain different loss functions
to train these models in Sections III-C and III-D.

A. BiTraP with Non-parametric (NP) Distribution

BiTraP-NP is built on a standard recurrent neural network
encoder-decoder (RNN-ED) based CVAE trajectory predictor
as in [16], [25], [29], [32], except it predicts goal first and
then predict trajectories leveraging goals. Following previous
work, we assume Gaussian latent variable Z ∼ N (µZ , σZ)
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Fig. 1: Overview of our BiTraP-NP network. Red, blue and black arrows show processes that appear in training only, inference
only, and both training and inference, respectively. BiTraP-NP is distinct from previous methods in its combination of goal
estimator and bi-directional decoder.

and a non-parametric target distribution format. Fig. 1 shows
the network architecture of BiTraP-NP.

Encoder and goal estimation. First, observed trajectory Xt is
processed by a gated-recurrent unit (GRU) encoder network to
obtain encoded feature vector ht. In training, ground truth tar-
get Yt is encoded by another GRU yielding hYt . Recognition
network qφ(Z|Xt,Yt) takes ht and hYt to predict distribution
mean µZq and covariance ΣZq which capture dependencies
between observation and ground truth target. Prior network
pθ(Z|Xt) assumes no knowledge about target and predicts µZp
and ΣZp using ht only. Kullback–Leibler divergence (KLD)
loss between N (µZp ,ΣZp) and N (µZq ,ΣZq ) is optimized so
that dependency between Yt and Xt is implicitly learned
by the prior network. Latent variable Z is sampled from
N (µZq ,ΣZq ) and concatenated with ht to predict multi-modal
goals Ĝt with goal generation network pω(Gt|Xt, Z). In
testing, we directly draw multiple samples from N (µZp ,ΣZp)

and concatenate ht to predict estimated goals Ĝt. We use 3-
layer multi-layer perceptrons (MLPs) for prior, recognition and
goal generation networks.

Trajectory Decoder. Predicted goals Ĝt are used as
inputs to a bi-directional trajectory generation network
pψ(Yt|Xt, Ĝt, Z), the trajectory decoder, to predict multi-
modal trajectories. BiTraP’s decoder contains forward and
backward RNNs. The forward RNN is similar to a regular
RNN decoder (Eq. (1)) except its output is not transformed
to trajectory space. The backward RNN is initialized from
encoder hidden state ht. It takes estimated goal Ŷt+δ = Ĝt
as the initial input (Eq. (2)) and propagates from time t + δ
to t + 1 so backward hidden state is updated from the goal
to the current location. Forward and backward hidden states
for the same time step are concatenated to predict the final
trajectory way-point at that time (Eq. (3)). These steps can be
formulated as

hft+1 = GRUf (hft ,W
i
fh

f
t + bif ), (1)

hbt+δ−1 = GRUb(h
b
t+δ,W

i
b Ŷt+δ + bib), (2)

Ŷt+δ−1 = W o
f h

f
t+δ−1 +W o

b h
b
t+δ−1 + bo, (3)

where, f , b, i and o indicate “forward”, “backward”, “input”

and “output” respectively, and hft and hbt+δ are initialized by
passing ht through two different fully-connected networks.

B. BiTraP with GMM Distribution

Parametric models predict trajectory distribution parame-
ters instead of trajectory coordinates. BiTraP-GMM is our
parametric variation of BiTraP assuming a GMM for the
trajectory goal and at each way-point [19], [20]. Let p(Yt+δ)
denote a K-component GMM at time step t+ δ. We assume
p(Yt+δ) =

∑K
i=1 πiN (Yt+δ|µit+δ,Σit+δ), where each Gaus-

sian component can be considered the distribution of one
trajectory modality. Mixture component weights πi sum to
one, thus forming a categorical distribution. Each πi indicates
the probability (confidence) that a person’s motion belongs
to that modality. We design latent vector Z as a categorical
(Cat) variable Z ∼ Cat(K,π1:K) parameterized by GMM
component weights π1:K rather than separately-computed pa-
rameters. Similar to BiTraP-NP, we use three 3-layer MLPs for
the prior, recognition and goal generation networks, and a bi-
directional RNN decoder for the trajectory generation network.
Instead of directly predicting trajectory coordinates, generation
networks of BiTraP-GMM estimate the µit+δ and Σit+δ of the
ith Gaussian components at time t+ δ. In training, we sample
one Z from each category to ensure all trajectory modalities
are trained. In testing, we sample Z from Cat(K,π1:K) so
it is more probable to sample from high-confidence trajectory
modalities.

C. Residual Prediction and BoM Loss for BiTraP-NP

Instead of directly predicting future location [23] or integrat-
ing from predicted future velocity [20], BiTraP-NP predicts
change with respect to the current location based on residuals
Ŷt+δ = Yt+δ − Xt. There are two advantages of residual
prediction. First, it assures the model will predict the trajectory
starting from the current location, providing smaller initial loss
than predicting location from scratch. Second, the residual
target can be less noisy than the velocity target due to the
fact that trajectory annotation is not always accurate. Standard
CVAE loss includes NLL loss of the predicted distribution
which is not applicable to NP methods due to their unknown
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Fig. 2: Latent space sampling and decoder modules of BiTraP-GMM. The ellipse shows one of K GMM components at each
timestep. The rest of the network is the same as BiTraP-NP in Fig. 1. BiTraP-GMM is distinct from previous methods with
its goal estimator, bi-directional decoder and bi-directional integration process.

distribution format. L2 loss between predictions and targets
can be used as a substitution [16]. To further encourage di-
versity in multi-modal prediction, we use best-of-many (BoM)
L2 loss as in [29]. The final loss function for BiTraP-NP is a
combination of the goal L2 loss, the trajectory L2 loss and the
KL-divergence loss between prior and recognition networks,
written as

LNP = min
i∈N

∥∥∥Gt −Xt − Ĝit
∥∥∥

+ min
i∈N

t+δ∑
τ=t+1

∥∥∥Yτ −Xt − Ŷ iτ
∥∥∥+KLD,

(4)

where Ĝt and Ŷτ are the predicted goal and trajectory way-
points with respect to current position Xt.

D. Bi-directional NLL Loss for BiTraP-GMM

Similar to [20], our BiTraP-GMM models the pedestrian
velocity distribution as a GMM at each time step. The ve-
locity GMM is then integrated forward to obtain the GMM
distribution of trajectory waypoints Yt+δ as shown by blue
blocks in Fig. 2. We assume linear dynamics for pedestrian
and use a single integrator as in Eq. (5). The loss function
is then the summation of negative log-likelihood (NLL) of
the ground truth future waypoints over the prediction horizon,
formulated as

GMMYt+δ(π̂
1:K
t+δ , µ̂

1:K
t+δ , Σ̂

1:K
t+δ)

= Xt +

∫ t+δ

t

GMMvτ (π1:K
τ , µ1:K

τ ,Σ1:K
τ )dτ,

(5)

NLLfwd =

t+δ∑
τ=t

− log p(Yτ |π̂1:K
τ , µ̂1:K

τ , Σ̂1:K
τ ), (6)

where π1:K
τ , µ1:K

τ , Σ1:K
τ are velocity GMM parameters at

time τ ∈ [t + 1, t + δ], and the ·̂ symbol indicates location
GMM parameters obtained from integration. p(·) is the GMM
probability density function. Such an NLL emphasizes earlier
waypoints along the prediction horizon because a waypoint at
time t + 1 is used in integration results over t + 2, t + 3, ...,
while these later waypoints are not used when computing t+1.
This goes against our proposed idea which is to leverage

a bi-directional temporal model. Therefore, we compute bi-
directional NLL loss with reverse integration from the goal,
formulated as

GMM ′Yt(π̃
1:K
t , µ̃1:K

t , Σ̃1:K
t )

= Gt −
∫ t

t+δ

GMMvτ (π1:K
τ , µ1:K

τ ,Σ1:K
τ )dτ,

(7)

NLLbwd =

t∑
τ=t+δ

− log p′(Yτ |π̃1:K
τ , µ̃1:K

τ , Σ̃1:K
τ ). (8)

where p(·)′ is the backward GMM probability density func-
tion, the ·̃ symbol indicates backward location GMM parame-
ters. The final loss function for BiTraP-GMM can be written
as

LGMM = − log p
G

(Gt|π̂1:K
G , µ̂1:K

G , Σ̂1:K
G )

+NLLfwd +NLLbwd +KLD,
(9)

where the first term is NLL loss of the goal estimation,
NLLfwd and NLLbwd are computed from forward and back-
ward integration, the KLD term is the KL-divergence similar
to Eq. (4).

IV. EXPERIMENTS AND RESULTS

In this section, we empirically evaluate BiTraP-NP and
BiTraP-GMM models on both first-person view (FPV) and
bird’s eye view (BEV) trajectory prediction datasets. We also
provide a comparative study and discussion on the effects of
model and loss selection.

Datasets. Two FPV datasets, Joint Attention for Autonomous
Driving (JAAD) [39] and Pedestrian Intention Estimation
(PIE) [23], and two benchmark BEV datasets, ETH [40]
and UCY [41], were used in our experiments. JAAD contains
2,800 pedestrian trajectories captured from dash cameras an-
notated at 30Hz. PIE contains 1,800 pedestrian trajectories
also annotated at 30Hz, with longer trajectories and more
comprehensive annotations such as semantic intention, ego-
motion and neighbor objects. ETH-UCY datasets contain five
sub-datasets captured from down-facing surveillance cameras
in four different scenes with 1,536 pedestrian trajectories
annotated at 2.5Hz.

Implementation Details. For JAAD and PIE, we used
the original training/testing splits with 0.5/1.5 second (15/45
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frame) observation/prediction horizons as in [23]. For ETH-
UCY, leave-one-out cross validation was applied, and the
observation/prediction horizon was set to 3.2/4.8 seconds (i.e.,
8/12 frames) per [13], [20]. We follow these conventions to
make fair comparisons between our results and those reported
in previous papers. According to [14], [42], both 1.5 and 4.8
seconds can be considered long-term horizons. We used hidden
size 256 for all encoders and decoders in BiTraP across all
datasets. All models were trained with batch size 128, learning
rate 0.001, and an exponential LR scheduler [20] on a single
NVIDIA TITAN XP GPU.

A. Experiments on JAAD and PIE Datasets

Baselines. We compare our results against the following
baseline models: 1) Linear Kalman filter, 2) Vanilla LSTM
model, 3) Bayesian-LSTM model (B-LSTM) [43], 4) PIEtraj ,
an attentive RNN encoder-decoder model, 5) PIEfull, a multi-
stream attentive RNN model, by injecting ego-motion and
semantic intention stream to PIEtraj , and 6) FOL-X [22],
a multi-stream RNN encoder-decoder model using residual
prediction. We also conducted an ablation study for a deter-
ministic variation of our model (BiTraP-D), where the multi-
modal CVAE module was removed.

Evaluation Metrics. Following [22], [23], [43], our BiTraP
model was evaluated using: 1) bounding box Average Dis-
placement Error (ADE), 2) box center ADE (CADE) and
3) box center Final Displacement Error (CFDE) in squared
pixels. For our multi-modal BiTraP-NP and BiTraP-GMM,
we compute the best-of-20 results (the minimum ADE and
FDE from 20 randomly-sampled trajectories), following [13],
[20], [44]. We also report the Kernel Density Estimation-based
Negative Log Likelihood (KDE-NLL) metric for BiTraP-NP
and BiTraP-GMM to evaluate the overall predicted distribu-
tion. KDE-NLL evaluates the NLL of the ground truth under a
distribution fitted by a KDE on 2000 trajectory samples from
each prediction model [20], [45]. For all metrics, lower values
are better.

Results. Table I presents trajectory prediction results with
JAAD and PIE datasets. Our deterministic BiTraP-D model
shows consistently lower displacement errors across various
prediction horizons than baseline methods such as PIEtraj
and FOL-X indicating our goal estimation and bi-directional
prediction modules are effective. Our BiTraP-D model, based
only on past trajectory information, also outperforms the state-
of-the-art PIEfull, which requires additional ego-motion and
semantic intention annotations. Table I also shows that non-
parametric multi-modal method BiTraP-NP performs better on
displacement metrics while parametric method BiTraP-GMM
performs better on the NLL metric. This difference illus-
trates the objectives of these methods: BiTraP-NP generates
diverse trajectories, and one trajectory was optimized to have
minimum displacement error, while BiTraP-GMM generates
trajectory distributions with more similarity to the ground truth
trajectory.

Fig. 3 shows trajectory prediction results on sample frames
from the PIE dataset. We observed that when a pedestrian in-

tends to cross the street or change directions, the multi-modal
BiTraP methods yield higher accuracy and more reasonable
predictions than the deterministic variation. For example, as
shown in Fig. 3(b), the deterministic BiTraP-D model (top
row) can fail to predict the trajectory and the end-goal, where
a pedestrian intends to cross the street in the future; the multi-
modal BiTraP-NP model (bottom row) can successfully predict
multiple possible future trajectories, including one where the
pedestrian is crossing the street matching ground truth inten-
tion. Similar observations can be made in other frames. This
result indicates multi-modal BiTraP-NP can predict multiple
possible futures, which could help a mobile robot or a self-
driving car safely yield to pedestrians. Although BiTraP-NP
samples diverse trajectories, it still predicts distribution with
high likelihood around ground truth targets and low likelihood
in other locations as shown in Fig. 3(b)-3(d).

B. Experiments on ETH-UCY Datasets

Baselines. We compare our methods with five multi-modal
baseline methods: S-GAN [13], SoPhie [44], S-BiGAT [30],
PECNet [25] and Trajectron++ [20]. PECNet and Trajectron++
are most recent. PECNet is a goal-conditioned method using
non-parametric distribution (thus directly comparable to our
BiTraP-NP) while Trajectron++ uses a GMM trajectory dis-
tribution directly comparable to our BiTraP-GMM. Note that
the baselines incorporated social information while our method
focuses on investigating goal-based trajectory modeling and do
not require extra input such as social or scene information.

Evaluation Metrics. Following [13], [25], [44], we used
best-of-20 trajectory ADE and FDE in meters as evaluation
metrics. We also report Average and Final KDE-NLL (ANLL
and FNLL) metrics on 2000 sampled trajectories [20], [45] to
evaluate the predicted trajectory and goal distribution.

Results. Table II shows the best-of-20 ADE/FDE results
across all methods. We observed that BiTraP-NP outperforms
the state-of-the-art goal based method (PECNet) by a large
margin (∼ 12% − 51%), demonstrating the effectiveness of
our bi-directional decoder module. BiTraP-NP also obtains
lower ADE/FDE on most scenes (∼ 12%-24% improvement)
compared with Trajectron++. Our BiTraP-GMM model was
trained using NLL loss, so it shows higher ADE/FDE results
compared with BiTraP-NP. This is consistent with our FPV
dataset observations in Section IV-A. Nevertheless, BiTraP-
GMM still achieves similar or better results than PECNet and
Trajectron++.

To further evaluate predicted trajectory distributions, we
report KDE-NLL results in Table III. As shown, BiTraP-GMM
outperforms Trajectron++ with lower ANLL and FNLL on
ETH, Univ, Zara1 and Zara2 datasets. On Hotel, Trajectron++
achieves lower NLL values which may be due to the possible
higher levels of inter-personal interactions than in other scenes.
We observed improved ANLL/FNLL on Hotel (-1.88/0.27)
when combining the BiTraP-GMM decoder with the interac-
tion encoder in [20], consistent with our hypothesis.

Fig. 4 shows qualitative examples of our predicted tra-
jectories using the BiTraP-NP and BiTraP-GMM models.
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TABLE I: Results on JAAD and PIE datasets. The center row shows deterministic baselines including our ablation model
BiTraP-D; the bottom row shows our proposed multi-modal methods. NLL is not available for deterministic methods since
they predict single trajectories. Lower values are better.

Methods
JAAD PIE

ADE CADE CFDE NLL ADE CADE CFDE NLL
(0.5/1.0/1.5s) (1.5s) (1.5s) (0.5/1.0/1.5s) (1.5s) (1.5s)

Linear [23] 233/857/2303 1565 6111 - 123/477/1365 950 3983 -
LSTM [23] 289/569/1558 1473 5766 - 172/330/911 837 3352 -
B-LSTM [43] 159/539/1535 1447 5615 - 101/296/855 811 3259 -
FOL-X [22] 147/484/1374 1290 4924 - 47/183/584 546 2303 -
PIEtraj [23] 110/399/1280 1183 4780 - 58/200/636 596 2477 -
PIEfull [23] - - - - -/-/556 520 2162 -

BiTraP-D 93/378/1206 1105 4565 - 41/161/511 481 1949 -
BiTraP-NP (20) 38/94/222 177 565 18.9 23/48/102 81 261 16.5
BiTraP-GMM (20) 153/250/585 501 998 16.0 38/90/209 171 368 13.8

(a) (b) (c) (d)

Fig. 3: Qualitative results of deterministic (top row) vs multi-modal (bottom row) bi-directional prediction. Past (dark blue),
ground truth future (red) and predicted future (green) trajectories and final bounding box locations are plotted. In the bottom
row, each BiTraP-NP likelihood heatmap fits a KDE over samples. The orange color indicates higher probability.

TABLE II: Trajectory prediction results (ADE/FDE) on BEV ETH-UCY datasets. Lower is better.

Datasets S-GAN [13] SoPhie [44] S-BiGAT [30] PECNet [25] Trajectron++ [20] BiTraP-NP BiTraP-GMM

ETH 0.81/1.52 0.70/1.43 0.69/1.29 0.54/0.87 0.43/0.86 0.37/0.69 0.40/0.74
Hotel 0.72/1.61 0.76/1.67 0.49/1.01 0.18/0.24 0.12/0.19 0.12/0.21 0.13/0.22
Univ 0.60/1.26 0.54/1.24 0.55/1.32 0.35/0.60 0.22/0.43 0.17/0.37 0.19/0.40
Zara1 0.34/0.69 0.30/0.63 0.30/0.62 0.22/0.39 0.17/0.32 0.13/0.29 0.14/0.28
Zara2 0.42/0.84 0.38/0.78 0.36/0.75 0.17/0.30 0.12/0.25 0.10/0.21 0.11/0.22

Average 0.58/1.18 0.54/1.15 0.48/1.00 0.29/0.48 0.21/0.39 0.18/0.35 0.19/0.37

TABLE III: Average-NLL/Final-NLL (ANLL/FNLL) results
on ETH-UCY datasets. Lower is better.

Datasets S-GAN [13] Trajectron++ [19] BiTraP-NP BiTraP-GMM

ETH 15.70/- 1.31/4.28 3.80/3.79 0.96/3.55
Hotel 8.10/- -1.94/0.25 -0.41/1.26 -1.60/0.51
Univ 2.88/- -1.13/2.13 -0.84/2.15 -1.19/2.03
Zara1 1.36/- -1.41/1.83 -0.81/1.85 -1.51/1.56
Zara2 0.96/- -2.53/0.50 -1.89/1.31 -2.54/0.38

As shown, BiTraP-NP (top row) generates future possible
trajectories with a wider spread (more diverse), while BiTraP-
GMM generates more compact distributions. This is consistent
with our quantitative evaluations as reported in Table III,
where the lower NLL results of BiTraP-GMM correspond to
more compact trajectory distributions. Fig. 4(d) illustrates a
challenging case where a pedestrian walks forward and then
turns around. Predicting such a sudden “turn around” action
would be difficult, resulting in a higher ADE of BiTraP-NP

(0.72) and BiTraP-GMM (1.21) compared to average ADE
(0.37 and 0.40) on ETH. Such challenging cases are related
to uncertainty in pedestrian intention and behaviors and will
be investigated in future work given more comprehensive
behavior annotations.

We also computed KDE-NLL results for both Trajectron++
and BiTraP-GMM methods at each time step to analyze how
BiTraP affects both short-term and longer-term (up to 4.8
seconds) prediction results. Per Fig. 5, BiTraP-GMM outper-
forms Trajectron++ with longer prediction horizons (after 1.2
seconds on ETH, Univ, Zara1, and Zara2). This shows the
backward passing from the goal helps reduce error with longer
prediction horizon.

C. Additional Experiments

Ablation study. We conducted two ablation experiments.
To show bi-directional decoder effectiveness, we removed
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(a) Hotel (b) Univ (c) Zara2 (d) ETH

Fig. 4: Visualizations of BiTraP-NP (first row) and BiTraP-GMM (second row). Twenty sampled future trajectories are plotted.
For BiTraP-GMM, we also plot end-point GMM distributions as colored ellipses. Size indicates component Σk and transparency
indicates component weight πk.

TABLE IV: Ablation study results (ADE/FDE and ANLL/FNLL). Lower is better.

Method
BiTraP-NP BiTraP-GMM

w/o backward (TraP-NP) w/ backward w/o bi-loss w/ bi-loss

ADE/FDE ANLL/FNLL ADE/FDE ANLL/FNLL ADE/FDE ANLL/FNLL ADE/FDE ANLL/FNLL
ETH 0.44/0.96 4.20/4.45 0.37/0.69 3.80/3.79 0.43/0.80 1.11/3.81 0.40/0.74 0.96/3.55
Hotel 0.13/0.23 -0.17/1.64 0.12/0.21 -0.41/1.26 0.16/0.25 -1.32/0.80 0.13/0.22 -1.60/0.51
Univ 0.21/0.43 -0.21/2.78 0.17/0.37 -0.84/2.15 0.20/0.41 -1.16/2.06 0.19/0.40 -1.19/2.03
Zara1 0.15/0.31 -0.37/2.27 0.13/0.29 -0.81/1.85 0.19/0.35 -0.90/2.12 0.14/0.28 -1.51/1.56
Zara2 0.12/0.23 -1.70/1.54 0.10/0.21 -1.89/1.31 0.13/0.25 -2.38/0.64 0.11/0.22 -2.54/0.38

TABLE V: Computational times with 20/2000 samples.

Method Scene Graph Model inference Total

S-GAN[13] N/A 103/10445 ms 103/10300 ms
Trajectron++[20] 11ms 55/58 ms 66/69 ms

TraP-NP N/A 5.3/5.9 ms 5.3/5.9 ms
BiTraP-NP N/A 8.3/9.1 ms 8.3/9.1 ms

BiTraP-GMM N/A 69/72ms 69/72ms

Fig. 5: KDE-NLL results on the ETH-UCY dataset per
timestep up to 4.8 seconds.

the backward decoder from BiTraP-NP and compared its
performance with the original BiTraP-NP model (w/o back-
ward (TraP-NP) vs w/ backward). To show bi-directional loss
effectiveness in BiTraP-GMM, we compared two BiTraP-
GMM models trained with forward loss and bi-directional
loss (w/o bi-loss vs w/ bi-loss). A comparison of ADE/FDE
and ANLL/FNLL results is presented in Table IV. Using a
bi-directional decoder (BiTraP-NP) improves ADE/FDE by
10%-28% (ANLL/FNLL by ∼0.4) from the model without
backward decoder. By using bi-directional loss (bi-loss), the
ADE/FDE of BiTraP-GMM model improves by 5-18% on
ETH, and ANLL/FNLL improves by ∼0.25.

Computational time. We provide model inference time
of Social GAN [13], Trajectron++ [20] and our BiTraP-NP
and BiTraP-GMM models in Table V. Trajectron++ generates
scene graphs before running the model so computation time
is summed over scene graph generation and model inference.
For Social GAN and our method, total time consists of model
inference time only. We show computational times for number
of samples 20 and 2000. Time differences of BiTraP models
between the two numbers are ∼ 3ms, while the difference
of S-GAN is extremely large as it generates samples one-by-
one. BiTraP-GMM is ∼ 3ms slower than Trajectron++, not
significant since both methods run at ∼ 70ms per frame (∼ 14
FPS) on average. BiTraP-NP is about 8x faster than Trajec-
tron++ and BiTraP-GMM since it does not fit a GMM model
or perform dynamic integration. Adding the bi-directional
decoder slows inference by ∼ 3ms (TraP-NP vs BiTraP-NP).
All experiments are conducted on the same machine used for
training.
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V. CONCLUSION

We presented BiTraP, a bi-directional multi-modal trajec-
tory prediction method conditioned on goal estimation. We
demonstrated that our proposed model can achieve state-of-
the-art results for pedestrian trajectory prediction on both
first-person view and bird’s eye view datasets. The current
BiTraP models, with only observed trajectories as inputs, al-
ready surpass previous methods which required additional ego-
motion, semantic intention, and/or social information. By con-
ducting a comparative study between non-parametric (BiTraP-
NP) and parametric (BiTraP-GMM) models, we observed that
the different latent variable choice affects the diversity of
target distributions of future trajectories. We hypothesized that
such difference in predicted distribution directly influences the
collision rate in robot path planning and showed that collision
metrics can be used to guide predictor selection in real
world applications. For future work, we plan to incorporate
scene semantics and social components to further boost the
performance of each module. We are also interested in using
predicted goals and trajectories to infer and interpret pedestrian
intention and actions.
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I. CVAE PRELIMINARIES

A Conditional Variation Autoencoder (CVAE) is a con-
ditional generative model designed to output target data Y
based on latent variable Z and observation X [1]. A CVAE
consists of three modules: a conditional prior network
pθ(Z|X) to model latent variable Z conditioned on obser-
vation X , a recognition network qφ(Z|X,Y ) to capture
dependencies between Z and target Y , and a generation
network pψ(Y |X,Z) to generate the target Y , where φ,
θ, and ψ represent network parameters. Stochastic latent
variable Z ∈ Rd is sampled from a pre-defined distribution
format such as a Gaussian distribution. The CVAE samples
Z and generates target Y conditioned on observation X .
The objective of a typical CVAE model is to maximize its
variational lower bound

max
θ,φ,ψ

Eqφ(Z|X,Y )

[
log pψ(Y |X,Z)

]
−KL

(
qφ(Z|X,Y )||pθ(Z|X)

)
,

(1)

where the first term maximizes the expectation of the log-
likelihood of the target in the predicted distribution; the K-L
(Kullback–Leibler) divergence term minimizes the difference
between the recognition network and the conditional prior
network. In this paper, we designed a modified CVAE with
two generation networks and optimize both networks end-
to-end.

II. ETH-UCY DATASET VARIATION STUDY

We present an analysis of the ETH-UCY dataset to show
variation of the dataset as follows. We calculated statistics
about pedestrian density, trajectory length, and velocity in
the five subscenes, as shown in Table I below. This table
is an extension of Table I in [2]. Note that Zara1 and
Zara2 were collected from the same scene, and Hotel was
collected from a scene visually similar to Zara1/Zara2.
During cross-validation experiments, we observed that such
scene similarity made the prediction results on Hotel, Zara1
and Zara2 datasets better because the training set contains
similar scenes to the testing set. For example, a model
trained with ETH, Hotel, Univ and Zara1 can perform well
when being tested with Zara2. An ETH scene contains
longer trajectories and larger velocities compare to the other
four scenes, making our prediction error higher on this
dataset. Univ is a densely populated subscene collected on
a university campus (on average ∼ 26.77 pedestrians per
frame, as shown in Table I), but it has shorter trajectories
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and lower velocities so our methods still perform reasonably
well on this dataset. Another observation from this table is
that the pedestrian velocities are usually slower in scenes
with larger numbers of pedestrians. Note in the second
column to the right of Table I that the goal points are
farther in ETH and Zara1 datasets than average (3.54 and
4.22 meters, respectively). The “future σl” values show the
standard deviation of the distances between the goal and the
current position, and a larger value indicates that some goal
points are farther from the current position while others are
close. This means the datasets contain diverse pedestrian
motions; some are walking fast and others are wandering
around or loitering. We have observed that goal prediction on
pedestrians with wandering or loitering behaviors are more
diverse because their motion intent is unclear, making it more
difficult to predict where the pedestrian might go since they
are currently not moving. On the other hand, goal prediction
for pedestrians walking fast is clearer, since their motion
intent can be more easily observed.

TABLE I: Mean and std (µn/σn) of pedestrian count per
frame of each dataset. We also show the mean and std dis-
tance (µl/σl) and velocity (µv/σv) for observed trajectories
(past 3.2 seconds) and future trajectories (future 4.8 seconds).
The units for distance and velocity are m and m/s.

Datasets µn/σn Obs. µl/σl Obs. µv/σv Future µl/σl Future µv/σv

ETH 6.15/4.46 2.85/2.44 1.04/0.88 3.54/3.19 0.87/0.80
Hotel 5.60/3.41 1.23/1.57 0.46/0.56 1.87/2.50 0.46/0.57
Univ 26.77/20.31 1.50/1.08 0.54/0.40 2.27/1.63 0.53/0.40
Zara1 5.91/3.21 2.70/1.09 0.97/0.40 4.22/1.64 0.97/0.38
Zara2 9.24/3.97 1.53/1.59 0.55/0.57 2.32/2.43 0.54/0.57

As for the First Person View (FPV) dataset, our method
takes the detected bounding box sequence as input and
relies on the accuracy of the object (in this case, human)
detector. We followed previous work using the provided
object bounding box sequences in the JAAD and PIE datasets
for training and testing. Thus, impact from potential object
occlusion was minimized in this work. We also trained our
method with dropout functions added to the encoder network,
adding robustness to potentially missed objects.

III. ROBOT NAVIGATION SIMULATION EXPERIMENT
USING BITRAP

To quantitatively analyze application of the BiTraP-GMM
and BiTraP-NP models to robot navigation tasks, we de-
signed a simulated robot navigation experiment based on the
ETH-UCY bird’s-eye view dataset. In this experiment, given
predicted pedestrian trajectory distributions in a scene using



our BiTraP models and pre-planned paths for a robot, we
show that we are able to compute the collision likelihood
for each path, and thus are able to predict collision rate and
select the safest path for the robot. Assuming a mobile robot
navigates among pedestrians, we present results on two tasks:
1) Select the safest path for the robot and 2) Predict whether
a path will collide with any other pedestrians in the scene. In
this section, we first introduce our experiment setup. Then,
we present evaluation results of our BiTraP models on path
selection and collision prediction tasks.

Fig. 1: Generation of Monte Carlo (MC) robot trajectories
for collision detection experiments using Bezier curves. We
illustrate five MC trajectory samples including start (robot
icon) and end (red star) waypoints. Predicted trajectory
distributions of neighbor pedestrians are plotted as a heat
map; their walking directions are indicated by black arrows.

Experimental Setup. We selected all samples with more
than one pedestrian in the test split [3] from ETH-UCY.
Each sample has a node pedestrian (the pedestrian used
for testing in previous work) and several neighbor pedes-
trians (the pedestrians used for social modeling in previous
work) as in [3], [4]. We regard the node pedestrian as a
”robot” navigating among other neighbor pedestrians. The
starting and goal points of the ”robot” are the same as
the current position and goal point of the node pedestrian.
A sample scene with one “robot” navigating among four
other pedestrians is shown in Fig. 1. For the robot, 100
Monte Carlo (MC) paths were generated from start state to
end point following quadratic and cubic Bezier curves [5].
Other more complex path planners could be used to generate
additional experimental datasets. We assume the robot must
reach the designated goal in 12 time steps, matching the
prediction horizon for the pedestrian node in each scene. We
uniformly generate waypoints along the path and randomly
shift each by up to ±50% of the step length, resulting in a
trajectory sequence containing 12 random waypoints. Other
pedestrians follow their original (ground truth) trajectories
in the scene. For each neighbor pedestrian, we run BiTraP-
NP and BiTraP-GMM separately. Each method samples
2000 future trajectories to fit one Gaussian Kernel Density
Estimation (KDE) model for each pedestrian as the predicted
future distribution. Then, we compute the maximum KDE
log-likelihood of all the waypoints on all robot MC paths and

treat this log-likelihood value as a collision score. The higher
the collision score, the more likely a collision will happen
along this path. Given these collision scores, we compute the
safest path collision rate (SPCR) as reported in Task 1 below.
Receiver operating characteristic (ROC) and precision-recall
(P-R) curve results are reported in Task 2.

Task 1: Predict the Safest Path. We mark the robot MC
path in each scene with minimum collision score as the
“safest” (lowest collision likelihood) path. Then, we compute
Euclidean distances between each safest path waypoint and
other pedestrians’ ground truth future trajectories. A collision
is tallied if the minimum distance between a path and any
pedestrians in the scene is less than 0.2 meters. Collision rate
is computed as the number of paths with collision divided by
the total number of safest paths. Due to the randomness in
MC path generation, we conducted the simulation experiment
five times with BiTraP-NP and BiTraP-GMM predictors
separately and report collision rate mean (µ) and standard
deviation (σ) values in Table II. As a comparison, we also
present the collision rate of a randomly selected path among
the 100 MC paths. The randomly selected paths do not
have very high collision rates since the paths are planned
based on pedestrian ground truth start and goal positions
which are less likely to be involved in a collision. Compare
to randomly selected paths, paths selected by our methods
reduce the SPCR by a large margin. This shows that our
predictors are effective for safest path selection. Both of our
BiTraP methods achieve collision rate lower than 1% on
ETH, Hotel and Zara1 datasets. The Univ dataset is more
difficult due to its high pedestrian density, and Zara2 is
most difficult because many pedestrian trajectories are quite
close to each other. BiTraP-GMM shows lower SPCRs than
BiTraP-NP on four datasets, indicating that it predicted more
accurate (compared to ground truth) distributions. On Zara1,
BiTraP-NP outperforms BiTraP-GMM by a small margin.
BiTraP-NP ANLL and FNLL metric values as reported in
the main paper are still higher than BiTraP-GMM values. A
possible explanation is that BiTraP-NP predicts more diverse
distributions thus detects some collisions not identified by
BiTraP-GMM.

TABLE II: SPCR(µ±σ), AUC and AP results of our methods
on ETH-UCY data group.

Random from 100 BiTraP-NP BiTraP-GMM
(SPCR) (SPCR/AUC/AP) (SPCR/AUC/AP)

ETH 0.6± 0.4% 0.3± 0.1%/ 92.3/ 24.2 0.1± 0.1%/95.5/26.0
HOTEL 0.4± 0.3% 0.1± 0.1%/ 86.4/ 22.4 0.0± 0.0%/91.6/29.1

Univ 8.5± 1.4% 5.8± 0.5%/ 81.0/ 33.4 3.6± 0.2%/87.6/43.4
Zara1 2.4± 0.5% 0.6± 0.2%/ 88.9/ 38.6 0.8± 0.3%/90.4/41.6
Zara2 6.1± 0.6% 3.2± 0.1%/ 81.0/ 44.0 2.5± 0.3%/87.5/52.6

Task 2: Predict Collision for Any Path. The collision rate
metric above only evaluates the safest path as selected by a
trajectory predictor thus neglects all other paths. In the real-
world, a trajectory predictor must be sufficiently accurate
for the robot to accurately predict future collisions with high
precision with a low missing rate (high true positive rate,
TPR) and a low false alarm rate (low false positive rate,



Method KDE NLL FDE ML

@1s @2s @3s @4s @1s @2s @3s @4s

Trajectron++ base [4] -2.69 -2.46 -1.76 -1.09 0.03 0.17 0.37 0.60
Trajectron++

∫
, map [4] -5.58 -3.96 -2.77 -1.89 0.01 0.17 0.37 0.62

BiTraP-GMM (ours) -6.08 -4.21 -2.98 -2.05 0.02 0.15 0.35 0.58

TABLE III: Pedestrian-only trajectory prediction results on nuScenes dataset.

FPR). To show the performance of BiTraP-NP and BiTraP-
GMM predictors in terms of these metrics, we plotted the
collision prediction ROC curve and P-R curve as follows.
First, we collected all MC paths for the robot and tallied their
collision scores. By setting a threshold γ, we can classify
a path as collided (positive) or not collided (negative) and
compute the TPR (i.e., recall), FPR and precision values.
The ground truth label of each path is computed in the same
way as before. By decreasing γ from a maximum value to
minimum value (6 and -10 in this work), we plot the ROC
and P-R curves shown in Fig. 2. The corresponding area
under curve (AUC) and average precision (AP) are presented
in Table II. In this work, AP is computed by equally spaced
recall levels {1/40, 2/40,...,1} following [6].

As shown in Fig. 2 and Table II, both BiTraP-NP and
BiTraP-GMM methods achieve high AUCs (e.g., > 90 on
ETH). Generally, BiTraP-GMM outperforms BiTraP-NP by
a small margin in terms of both AUC and AP (e.g., 95.5 vs
92.3 AUC, and 26.0 vs 24.2 AP on ETH). Note that in real-
world mobile robot applications missed collision detection
(false negative) is unacceptable due to safety. That is to
say, a high TPR (recall) is required. As can be observed in
the higher TPR regions (x-axis) of the P-R curves, BiTraP-
GMM outperforms BiTraP-NP on ETH (Fig. 2(a)) and Hotel
(Fig. 2(b)), and both methods perform similarly on Zara1
(Fig. 2(d)). On Univ (Fig. 2(c)) and Zara2 (Fig. 2(e)), when
the TPR is greater than a relatively high value (say 0.8), the
FPR are higher (> 0.2) than in the other datasets, indicating
increased chance of false alarms on these two datasets.

Compared to the ROC curve, the P-R curve is more suit-
able for imbalanced datasets due to the fact that it evaluates
the fraction of true positives among positive predictions. This
fits our case where the ratio of with-collision to no-collision
paths is around 1:140, a large imbalance. On Univ and Zara2
(Fig. 2(c) and 2(e)), BiTraP-GMM has higher precision than
BiTraP-NP across almost all recall values. On the other hand,
on ETH, Hotel and Zara1 (Fig. 2(a) 2(b) and 2(d)), the two
methods achieve similar precision at higher recall regions
(e.g., when recall> 0.6). This is because when the threshold
γ is too low, many paths are predicted as collided by both
methods.

The ROC and P-R curves also verified our observation
regarding the diversity of the predicted trajectory distribution
as described in the main paper. At a fixed TPR on the ROC
curves, we observe that BiTraP-NP always has a greater
FPR than BiTraP-GMM, consistent with our hypothesis that
BiTraP-NP predicts more diverse distributions, thus predicts
more false alarms. Similarly, with fixed recall in P-R curves,

BiTraP-NP has lower precision due the greater number of
false alarms.

Discussion on BEV data. This section motivates our deci-
sion to design this experiment using Birds’ Eye View (BEV)
data, such as the ETH-UCY dataset. Many existing works on
dynamics modeling and path planning are actually in Bird’s-
Eye View (BEV) scenarios [7], [8], [9], [10], [11], [12], [13],
[14] because the physical distance between agents, objects,
and goals can be more easily measured. In these papers,
the robots either assumed accessibility to BEV sensors or
created BEV maps by detecting the positions of surrounding
objects using onboard sensors. The navigation problem was
then solved in BEV. Although the robot sometimes only
observes FPV image/point clouds, many methods still rely on
creating a BEV world to perform navigation. For example,
[9], [13] designed their navigation simulation in BEV, and
[14] used the ETH-UCY dataset to test their navigator,
the same dataset we used. Related BEV applications also
include traffic monitoring, surveillance and security, and
path planning for navigational purposes at cafes, shopping
malls, and airport service robots [12], [14]. To this end,
we concluded it was reasonable to conduct our experiments
using BEV data.

The purpose of this simulation experiment was to pro-
vide an alternative metric to evaluate and compare the
performance of our two proposed predictor variations (i.e.,
BiTraP-NP vs BiTraP-GMM). We also aimed to show that
predictor performance can be used to compute collision rates
and guide applications such as path selection. Conducting
this simulation experiment in BEV was more feasible and
reasonable for this purpose because our predictors can predict
future trajectories of surrounding pedestrians and generate
a cost map for the robot. It is also easier to visualize
the paths in BEV, which is helpful in verifying consistent
observations between main manuscript and supplementary
results regarding the diversity/compactness of predicted tra-
jectory distributions, i.e., BiTraP-NP predicts more diverse
distributions while BiTraP-GMM predicts more compact
distributions. It is certainly possible to design a similar
experiment using FPV dataset. In that case BEV data must be
generated from FPV data if camera parameters are available
to serve our experiment purpose anyway, so we decided
to show results on BEV datasets directly. The goal of
providing this supplementary experiment was to take a step
at closing the gap between trajectory prediction research and
navigation research by placing a robot equipped with our
predictors into the environment and showing it is possible
to compute and evaluate how much the collision rate is



(a) ETH

(b) Hotel

(c) Univ

(d) Zara1

(e) Zara2

Fig. 2: ROC (left) and P-R (right) curves of BiTraP-NP and
BiTraP-GMM on ETH dataset.

reduced given different predictors. We hope this experiment
will inspire future researchers to evaluate their trajectory
predictor using not only the prediction accuracy/error but

also robot navigation metrics such as reduction of collision
rate.

In summary, this simulated robot collision experiment
demonstrated our proposed BiTraP trajectory predictor can
be used in future robotic applications, such as predicting
collisions and selecting safest paths in robot navigation tasks.
Results from this supplementary experiment are consistent
with our main paper’s observations and further verify our
hypothesis regarding the diversity/compactness of predicted
trajectory distributions, i.e., BiTraP-NP predicts more diverse
distributions while BiTraP-GMM predicts more compact
distributions. The SPCR, ROC (AUC) and P-R (AP) metrics
used in this experiment act as a supplement to the currently
reported and widely used ADE/FDE and KDE-NLL metrics
in the main paper. We believe these additional metrics and
experiments offer an intuitive and complementary perfor-
mance evaluation of the two proposed BiTraP models (NP
and GMM) and their applications for tasks such as collision
prediction and path selection.

IV. EXPERIMENT AND RESULT ON NUSCENES DATASET

Among the datasets we have evaluated on, JAAD and
PIE are first-person view only while ETH and UCY are
focusing on campus or sidewalks only. To further present
the performance of BiTraP in bird’s eye view autonomous
driving scenarios, we evaluate on the nuScenes dataset [15].
The nuScenes dataset contains trajectories collected from
850 scenes, 700 for training and 150 for testing [15]. We
followed [4] to extract training and testing trajectories and
trained our model using the same configurations as in ETH-
UCY experiment. Note that we treat the pedestrian position
at 4 seconds in the future as the target of our goal or end-
point during training.

Evaluation metrics. To be comparable with [4], the most-
likely (ML) prediction is used to compute the final dis-
placement error (FDE). We also use the kernel density
estimation negative log-likelihood (KDE NLL) as in our
other experiments.

Method FDE ML

@1s @2s @3s @4s

Trajectron++ base [4] 0.18 0.57 2.25 2.24
Trajectron++

∫
, map [4] 0.07 0.45 1.14 2.20

BiTraP-GMM (ours) 0.08 0.43 1.06 1.99

TABLE IV: Vehicle-only trajectory prediction results on
nuScenes dataset.

Results. As can be seen in Table III, adding dynamic
integration and map encoding to the base Trajectron++
improved the distribution accuracy by a large margin but
does not affect the FDE ML, indicating similar modes but
smaller variances of the predicted distributions. Trajectron++
based methods used interactions and/or encoded map as
inputs while our BiTraP-GMM only takes target pedestrians
past trajectory. As in Table III, BiTraP-GMM improves the
KDE-NLL at all evaluated time steps and also improves FDE



after 2 seconds, showing how does the bi-directional strategy
improves prediction accuracy. Note that the Trajectron++
benchmark lacks a ablation with integration but not map
encoding (e.g. Trajectron++

∫
) to show the necessity of map.

However, our experiment shows that map may not be a very
important information when predicting pedestrian trajecto-
ries on nuScenes dataset since BiTraP-GMM outperforms
“Trajectron++

∫
, map”.
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