
MIC-AQT: Improving Domain Adaptive Object Detection of
Adversarial Query Transformers with Masked Image Consistency

Peter Stratton1 and Xiaoxiao Du1

I. MOTIVATION

Deep learning-based object detectors typically suffer from
a performance drop when a domain gap (e.g., distribution
mismatch) is present between training and testing environ-
ments. Unsupervised Domain Adaptation (UDA) methods
[1] have been developed to adapt the networks to the target
domain by minimizing the cross-domain discrepancy.

Adversarial Query Transformers (AQT) [2] is a state-of-
the-art transformer-based domain adaptive object detector.
AQT integrates multi-level adversarial feature alignments
into a detection transformer (e.g., Deformable DETR [3])
and uses cross-attention modules to classify domain labels
and identify domain-specific object features. In this work,
we propose to improve the performance of AQT by adding
Masked Image Consistency (MIC) [4], a UDA module to
improve the learning of target domain context relations. MIC
uses a student-teacher network to learn context clues on the
target domain by passing masked target images to the student
network and unmasked target images to the teacher network.
We believe that the added MIC module will encourage the
AQT detector to better use context information from pixels
close to the objects and will increase the domain adaptability
of AQT, particularly for objects that look visually similar to
backgrounds. Quantitative evaluation and visual results will
be presented to show the domain adaptive object detection
performance of our proposed MIC-AQT method.

II. PROBLEM STATEMENT
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fθ. NS and NT are the number of images in the source
and target datasets, respectively. The loss functions for UDA
networks typically consist of two terms, a supervised source
loss LS and an unsupervised target loss LT [4]. We also
add a masked loss LM = H(ŷ, pT ), where the outputs of
the teacher network pT are used as pseudo-labels for the
student network’s predictions on the masked image ŷ. For
our detector, LS and LM are both implemented with the
Hungarian loss [3]. Our loss equation is given by
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λ· are weighting parameters (= 1 currently). After training,
the network is evaluated on the target domain dataset T .
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Method Source Target mAP ↑

Source Only (Deformable DETR) C FC 27.9
AQT C FC/B 43.0/22.9

MIC-AQT C FC/B 44.4/27.0

TABLE I
EXPERIMENT RESULTS OF MIC-AQT VS AQT. C = CITYSCAPES, FC =

FOGGY CITYSCAPES, B = BDD100K DAYTIME

III. RESULTS

In all our experiments, we trained using a batch size of 4
on 1 GPU, for 50 epochs on Foggy Cityscapes and 20 epochs
on BDD100K. Table I shows improved detection accuracy
(mAP) of MIC-AQT compared to vanilla AQT without the
MIC module on both the cityscapes-to-foggy cityscapes
[5], [6] and cityscapes-to-BDD100K daytime datasets [7].
Figure 1 shows visual comparison of both methods. As
shown, MIC-AQT (blue) correctly identified the cars on
the left that blended with the background, while AQT
(orange) missed. This shows that MIC-AQT was better at
leveraging contextual features to make accurate predictions,
even across domains. We also note that MIC can easily
work with other transformer-based object detection network
architectures (such as AQT) and help improve its perfor-
mance on domain adaptive object detection tasks. AQT (blue)
correctly identified the cars on the left that blended with the
background, while AQT (orange) missed. This shows that
MIC-AQT was better at leveraging contextual features to
make accurate predictions, even across domains. We also
note that MIC can easily work with other transformer-based
object detection network architectures (such as AQT) and
help improve its performance on domain adaptive object
detection tasks. AQT (blue) correctly identified the cars
on the left that blended with the background, while AQT
(orange) missed. This shows that MIC-AQT was better at
leveraging contextual features to make accurate predictions,
even across domains. We also note that MIC can easily work
with other transformer-based object detection network archi-
tectures (such as AQT) and help improve its performance on
domain adaptive object detection tasks.
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Fig. 1. MIC-AQT Result on BDD100K. Orange are AQT predictions and
Blue are MIC-AQT predictions.
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